BIONANO GENOME MAP OF WHEAT CHROMOSOME ARM 7DS SUPPORTS ACCURATE SEQUENCE ASSEMBLY

Hana Šimková

IWGSC workshop, June 29th 2014, Wernigerode

CHALLENGES IN PLANT GENOME SEQUENCING

De novo genome assemblies using only short read data of NGS technologies are generally incomplete and highly fragmented due to

- Large duplications chromosomal approach, BAC-by-BAC sequencing
- High proportion of repetitive DNA challenge!

- Large genome size
- Polyploidy

- Long mate-pair reads
- Long read technologies PacBio, Moleculo, Oxford Nanopore
- Optical mapping/genome mapping in nanochannel arrays (BioNano Genomics, Irys platform)

Single-molecule mapping of genomic DNA hundreds of kilobases in size

BIONANO GENOME MAPPING ON NANOCHANEL ARRAYS

CHROMOSOME MAPPING ON NANOCHANNEL ARRAYS

- Pilot study on wheat 7DS chromosome arm (381 Mb, 2.25% wheat genome)
 - Purified as telocentric chromosome by flow cytometric sorting

- In silico analysis (7DS CSS sequence) for chromosome mapping
 - Nt.BspQI ~13 sites per 100kb
 - Nb.BbvCl ~7 sites per 100kb

BIONANO MAP OF 7DS: DATA ACQUISITION

- Three miniplugs from flow-sorted 7DS chromosome arm:
 - flow sorted equivalent of 950 ng, recovered 575 ng at 25ng/µl
- Labelling Nt.BspQI
- Collecting data from one version-2 chip

Length treshold	Total coverage	n50
150kb	200x	344kb

http://olomouc.ueb.cas.cz/

DE NOVO ASSEMBLY OF 7DS

- A total of **371 genome maps** were *de novo* assembled
- Total assembly length is 350Mb (92% of estimated 7DS size)
- Average map size is 0.9Mb
- n50 is 1.3 Mb

http://olomouc.ueb.cas.cz/

REPEAT UNITS IN 7DS

- Labeled repeat occurrence can be measured from single molecules
- Based on the quantitation of repeat units in single molecules in the whole sample and the longest single array in a molecule, it appears that this repeat is likely contained in a single array

http://olomouc.ueb.cas.cz/

7DS SEQUENCING STRATEGY

- 4608 MTP clones \rightarrow 1152 pools of four non-overlapping BAC clones
- Illumina pair-end seugencing 550bp fragment size,
 96 pools per lane of HiSeq, 100bp read length, coverage ~500x
- Assembler Sassy (Kazakoff *et al.* 2012)
- Deconvolution through BAC end sequences, inner contigs unresolved
 - 1-20 contigs per BAC clone, median 3.8
 - average contig size 24.3 kb
- Assignment of inner contigs based on
 - mate-pair data obtained from MTP-plate pools (384 clones)
 - information from overlapping BAC clones (BLAST on BAC pools)
 - BioNano mapping ?

TESTING BIONANO MAP ON 7DS SEQUENCE

By aligning BAC clone sequences to the BioNano genome map through IrysView sofware

- 10 BAC clones assembled as one contig
- ctg 783 of the 7DS physical map
 - 8 BAC clones
 - 700 kb

TESTING BIONANO MAP ON 7DS SEQUENCE

TESTING BIONANO MAP ON 7DS SEQUENCE

BIONANO MAP FOR IDENTIFYING MISASSEMBLIES

BAC 03 No hit \rightarrow totally misassmbled or missing in the BioNano map

BIONANO MAP FOR IDENTIFYING AND CORRECTING MISASSEMBLIES

BIONANO MAP FOR IDENTIFYING AND CORRECTING MISASSEMBLIES

BIONANO MAP FOR POOL DECONVOLUTION

Clones 116M20 and 128G04 assembled from pools:

TaaCsp7DS**086H04**

- inner contigs unresolved
- BLASTing the pools against each other indicated two contigs (16 and 8 kb) shared between the pools
- they match the size of the gap and comprise the recognition sites predicted from the genome map

BIONANO MAP FOR PHYSICAL MAP IMPROVEMENT

Co-assembly of 7DS with Ae. tauschii

BIONANO MAP FOR PHYSICAL MAP IMPROVEMENT

CONCLUSIONS

- Coupling chromosome sorting with BioNano technology enables producing quality *de novo* genome maps for particular chromosomes/arms
- Size estimation is very precise (error 0.3%)

The genome map showed useful for

- Studying distribution of large DNA repeats
- Genome sequence assembling (deconvolution of BAC pools, identifying misassemblies, sizing gaps, assembly improvement)
- Improving physical maps, orienting contigs, scaffolding

ACKNOWLEDGEMENTS

Helena Staňková Jan Vrána Marie Kubaláková Jaroslav Doležel

Alex Hastie Han Cao

David Edwards Paul Visendi Jacqueline Batley Satomi Hayashi

University of California, Davis Mingcheng Luo

Kansas State University Bikram Gill Bernd Friebe

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

