AN INTEGRATED APPROACH FOR THE PHYSICAL MAPPING OF WHEAT CHROMOSOME 5A

GIAMPIERO VALÈ CRA -GENOMICS RESEARCH CENTRE ITALY HTTP://CENTRODIGENOMICA.ENTECRA.IT/

International Wheat Genome Sequencing Consorlium

12th WGS

Chromosome-arm specific BAC libraries

Two BAC libraries prepared from flow sorted DNA

5A

5AS BAC library "TaaCsp5AShA" 46.080 clones (120 plates) 5AS mean insert size = 120kb 295Mb 5AS coverage= 16.5X 5AL BAC library "TaaCsp5ALhA" 90.240 clones (235 plates) 5AL 532Mb mean insert size = 123kb 5AL coverage= 18.3X

BAC Library Fingerprinting and Contig Assembly

BAC fingerprinting

✓ 44,740 clones of 5AS and 51,072 clones of 5AL were fingerprinted using SnaPshot method.
✓ 75,995 high quality fingerprints after contamination removal.

Useful fingerprints were assembled using first FPC according to IWGSC rules: a MTP (MTP-FPC) was established after automated assembly

✓ Several successive cutoffs were used from 1e-75 to 1e-25
✓ 5AS: 1,308 contigs, 4,201 clones, 342 Mb

✓ 5AL: 2,556 contigs, 6,560 clones, 601 Mb

Successively, the same useful fingerprints were also assembled using LTC according to Frenkel et al. 2010 guidelines and a second MTP (MTP-LTC) was established after automated assembly

✓ 5AS: 652 contigs, 5,412 clones, 330 Mb
✓ 5AL: 1,504 contigs, 8,709 clones, 676 Mb

BAC Library Fingerprinting and Contig Assembly

	5AS		5AL	
Chromosome arm size (Mb) BAC library size (clones) Average insert size (kb) Library clone depth	295 46,080 120 16.5x		532 90,240 123 10.4x	
Fingerprinting technique # fingerprinted clones	SNaPShot HICF 44,740		SNaPShot HICF 51,072	
Assembly method	FPC	LTC	FPC	LTC
Assembly stringency	1,00E-45	1,00E-20	1,00E-45	1,00E-20
# useful fingerprints	36,	36,165 39,830 (76%_8.		(76%_8.1
	(80,8%_13.2 equivalents)		equivalents)	
# clones in assembly	36,165	36,165	39,830	39,830
# clones in contigs	25,084	26,659	27,764	29,610
# singletons	11,081	9,506	12,066	10,220
# MTP contigs	1,308	652	2,556	1,504
# MTP clones	4,201	5,412	6,560	8,709
Estimated chromosome arm coverage (Mb, %)	342(116%)	330 (112%)	601 (113%)	678 (127%)
Contig N50	354	128	823	407
Contig L50 (kb)	296	820	251	563
# contigs \geq 3 clones in the assembly	1,062	625	2,166	1,453
Average contig size (kb)	265	522	228	462
Longest contig (kb)	1,297	3,391	1,027	2,303

3D Pools of 5A MTP (FPC- and LTC-)

Anchoring: sources and strategies

Anchoring via PCR

- ✓ genetic maps
- ✓ neighbor map
- ✓ deletion bin map

Anchoring via array

✓ genome zipper

In silico anchoring

✓ BES from FPC-MTP on IWGSC Illumina scaffolds

Genetic maps

4 Segregating populations

- 383 F2 Chinese Spring (CS) x Renan (T. aestivum) **
- 188 RILs from CS x CS-T. dicoccoides Disomic Substitution 5A ••• (T. aestivum x T. turgidum dicoccoides)
- ♦ 132 RILs from DV92 x G3116 (*T. monococcum*)
- 124 RILs from Latino x MG5323 (T. turgidum ssp durum x T. turgidum ssp dicoccum) **

Several classes of molecular markers

length

159.3

138.5

187

116.7

TE junction-based markers (ISBP, RJM, RJJM) from survey sequencing of 5AS

0.29

0.41

0.28

0.42

- SSRs from survey sequencing of 5AS
- SSRs and SSR-ESTs from literature

LG

2

2

5

3

COSs

CS x Re

Dv x G

Lt x MG

CS x CS5A

299 polymorphic and specific markers

Anchoring of FPC-MTPs and integration with LTC

Screening of FPC-MTP 3D pools using PCR with all available markers (SSRs, COS and TE-derived)

anchoring of contigs using a dedicated scripting

178 markers anchored (positive for at least one BAC) 168 contigs anchored by at least one marker

total length anchored: 43.2 Mb of 5AS and 12.6 Mb of 5AL

FPC ASSEMBLY	5AS	5AL
anchored markers	130	48
EST and COS	9	10
SSR and SSR-EST	33	37
STS	1	1
TE-based	87	-
FPC unique contigs	122	46
total length anchored (Mb)	43.2	12.6
total length anchored (Mb) after LTC integration	99.8	21.3
corresponding total length anchored (Mb) by LTC	106.5	27.3

Neighbor map

Map used as a scaffold

CS x CS5A 90K map (Gadaleta et al, submitted; 572 markers)

Map used for the integration of CSxCS5A

Latino x MG5323 90K map (*Desiderio et al, submitted*; 593 markers) 90K Illumina consensus map (*Wang et al, 2014*; 1,605 markers) CS x Re map SSR consensus map (*Somers et al, 2004*) Nanda2419 x Wangshuibai (*Xue et al, 2008*) Arina x Forno (*Paillard et al, 2003*)

neighbor map

total length: 248.7 cM 3 linkage groups 2,681 markers included 2,501 SNPs 122 SSRs 26 TE-based 18 STSs 14 ESTs average density: 10.7 markers/cM

Anchoring via PCR on LTC-MTP 3D pools

Anchoring of LTC-MTPs

A15K Agilent custom microarray was designed <u>4,722 sequences</u> deriving from several sources:

- Genome Zipper reads
- 5A ESTs from GrainGenes database
- RFLPs, SNPs, SSRs, TE-based junction markers

12,676 probes have been developed and 118 3D pools have been hybridized

FPC-MTP BAC End Sequencing

2,835 clones recovered 5,194 good quality reads (92%) 3.4 Mb – GC content 43.8% average length 650 bp

2,117 ISBP markers 52 SSRs (di- tri- tetra-nucleotide)

1,964 ISBPs (considering only one marker/sequence + 124 SSRs

Ready for RH panel

5AL-FPC-MTP

length distribution in 5AL BES

A radiation hybrid panel for 5A

nulli5Atetra5B nulli5Atetra5D

Approx. 390 crosses performed for each nullisomic line Nulli5Atetra5B \rightarrow 3500 seeds Nulli5Atetra5D \rightarrow 5600 seeds

Nulli5Atetra5B x CS Nulli5Atetra5D x CS

Nulli5Atetra5B Х CS 1 Kr

In silico anchoring

Summarizing..

66%, 194 Mb

merging using LTC assembly

Collaborations..

Yellow rust (5AL)

with Jorge Dubcovsky University of California, Davis, CA, USA

Fusarium headblight, FHB QTL (5AS)

with Hermann Buerstmayr Institute for Biotechnology in Plant Production, Tulln, AUSTRIA

Yellow mosaic virus (WYMV) (5AL)

with Xiue Wang Nanjing Agricultural University, Nanjing, CHINA

5AL-4AL breakpoints

with Chunji Liu CSIRO Plant Industry, Queensland Bioscience Precinct, Australia

Oxalate oxidase (5AS)

with Renato D'Ovidio Universita' degli Studi della Tuscia Viterbo, ITALY

All people involved

Coordinators (CRA-GPG, Italy) Luigi Cattivelli, Antonio Michele Stanca, Giampiero Valè

Flow sorting and BAC library preparation

Institute Experimental Botany, Olomouc, Czech Republic Jaroslav Dolezel Hana Simkova

Library Replication Delfina Barabaschi, *CRA-GPG*

Fingerprinting and BES

IGA Udine, Italy Federica Cattonaro Federica Magni Simone Scalabrin Michele Morgante

Genetic Mapping

Delfina Barabaschi, *CRA-GPG* Andrea Volante, *CRA-GPG* Katia Lacrima, *CRA-GPG* Vania Michelotti, *CRA-GPG* Luigi Orrù, *CRA-GPG* Francesca Desiderio, *CRA-GPG* Enrico Francia, *UniMore, Reggio Emilia, Italy* Agostino Fricano, *PTP, Lodi Italy* Annamaria Mastrangelo, *CRA-CER, Foggia, Italy*

Radiation Hybrid panel

Andrea Volante, *CRA-GPG* Ajay Kumar, *NDSU, USA*

Citogentic Mapping

UniBari, Italy Agata Gadaleta Antonio Blanco

Anchoring Genetic to Physical

Delfina Barabaschi, *CRA-GPG* Andrea Volante, *CRA-GPG* Lucia Prazzoli, *CRA-GPG* Paola Tononi, UniVerona, Italy Massimo Delledonne, UniVerona, Italy

Survey Sequencing and GZ development

CRIBI Padova Giorgio Valle Nicola Vitulo

Bioinformatic Support *CRA-GPG* Paolo Bagnaresi