Homeologous Epistasis in Wheat: The Search for an Immortal Hybrid

Nicholas Santantonio, Jean-Luc Jannink and Mark Sorrells

Cornell University

January 11, 2020

Mac Key 1970

Hereditas 66: 165-176 (1970)

Significance of mating systems for chromosomes and gametes in polyploids

JAMES MAC KEY

Department of Genetics and Plant Breeding, Agricultural College of Sweden, Uppsala¹
(Received August 10, 1970)

- Evolutionary "balance between new-creating and preserving forces."
- ▶ Maintain "homozygosity and heterozygosity ... at different homoeologous loci."
- ▶ Allopolyploids preserve through selfing (homo), while maintaining allelic diversity (homeo)

Evolution of allohexaploid wheat

Triticum

- ► Fertile Crecent
- Neolithic revolution
- ightharpoonup AA imes BB \sim 0.5 Mya

Aegelops

- early speciation from Triticum (A × B)
- ightharpoonup AABB imes DD \sim 10,000 ya

Allohexaploid wheat

Allopolyploid

- ► Very difficult to assemble a genome
 - ▶ Thank you IWGSC! (and for prepublication access!)
- Disomic inheritance
 - no crossover across homeologous chromosomes
- Autogamous
 - \triangleright self-pollinated (outcrossing <1%)
- ► Allelic diversity preserved across subgenomes
 - Most genes have three divergent copies!

Is wheat an immortalized hybrid?

Hybrid generation

allelic interactions! (dominance)

Allopolyploid formation

homeoallelic interactions? (homeologous epistasis)

With markers and RefSeq, we can now ask this question!

Cornell Winter Wheat Master Population

Cornell winter wheat breeding population

- ▶ 8,692 phenotypic records
 - ▶ 1.447 lines
 - > 26 NY trials
 - ▶ 10 years (2007 2016)
 - > 2-3 locations / year
 - ▶ 11.604 GBS markers
 - 4 traits
 - Grain Yield (GY)
 - ▶ Test Weight (TW)
 - ▶ Heading Date (HD)
 - > Plant Height (PH)

- Align markers to RefSeq v1.0
 - separate markers by subgenome
 - ▷ calculate genetic covariance for each subgenome:
 K_A, K_B and K_D
 - estimate subgenome breeding values

Can predict subgenome breeding values

GY Grain Yield

TW Test Weight

- best A
- ▲ best B
- best D
- Best individuals dont have the best subgenomes
- Can select parents with complementary subgenomes

Santantonio, Jannink and Sorrells (2019a; G3)

Subgenome interactions aid genomic prediction

Hadamard product for epistatic covariance $\mathbf{K}_G \odot \mathbf{K}_G$

 $\mathbf{K}_{A} \odot \mathbf{K}_{B}$ $\mathbf{K}_{A} \odot \mathbf{K}_{D}$ $\mathbf{K}_{B} \odot \mathbf{K}_{D}$

Suggests all epistasis is homeologous?

Two-Locus Epistasis

Santantonio, Jannink and Sorrells (2019b; Genetics)

Consider the two locus model (from Hill et al. 2008):

$$\mathsf{E}[y] = \mu + B\alpha_B + C\alpha_C + BC(\alpha\alpha)_{BC}$$

Additive × Additive

Duplicate Factor

$$\begin{array}{c|cc} & CC & cc \\ \hline BB & 2a & 0 \\ bb & 0 & 2a \end{array}$$

$$\begin{array}{c|cc} & CC & cc \\ BB & a & a \\ bb & a & 0 \end{array}$$

Subfunctionalization

$$\begin{array}{c|cc} & CC & cc \\ BB & s(a^* + \tilde{a}) & a^* \\ bb & \tilde{a} & 0 \end{array}$$

Subfunctionalization Epistasis

Let a be the effect of a functional allele (or haplotype),

- ▶ 158 RILs
- Segregating for two homeologous dwarfing genes

Subfunctionalization of Dwarfing Genes

- ▶ $1+1 \neq 2$
- functional redundancy

Interaction of markers near Green Revolution dwarfing genes

- ▶ 158 RILs
- Segregating for two homeologous dwarfing genes

Subfunctionalization of Dwarfing Genes

- ▶ $1+1 \neq 2$
- functional redundancy

Interaction of markers near Green Revolution dwarfing genes

- ▶ 158 RILs
- Segregating for two homeologous dwarfing genes

Subfunctionalization of Dwarfing Genes

- ▶ $1+1 \neq 2$
- functional redundancy

Interaction of markers near Green Revolution dwarfing genes

- ▶ 158 RILs
- Segregating for two homeologous dwarfing genes

Subfunctionalization of Dwarfing Genes

- ▶ $1+1 \neq 2$
- functional redundancy

Green Revolution dwarfing genes 20 9 Plant Height (cm) 8 s > 18

Rht1 Genotype

Interaction of markers near

Rht - D1h dwarf

Rht - D1 wildtype

Homeoallelic Marker Sets

IWGSC RefSeq v1.0 genome

- ▶ 110,790 coding sequences
- ► Align CDS to self

Alignments

- ▶ 24,695 singletons, 20,319 multi-align
- ▶ 23,796 homeologous gene sets
 - ▶ 18,184 triplicates
 - ▶ 5,612 duplicates
 - $ho \sim 60\%$ gene space

Homeoallelic Marker Sets

IWGSC RefSeq v1.0 genome

- ▶ 110,790 coding sequences
- ► Align CDS to self

Alignments

- ► 24,695 singletons, 20,319 multi-align
- ▶ 23,796 homeologous gene sets
 - ▶ 18,184 triplicates
 - ▶ 5,612 duplicates
 - $ho \sim 60\%$ gene space

Anchor closest GBS marker

- ▶ 10,172 marker sets
 - ▶ 6,142 triplicates
 - > 3,985 duplicates

Additive GWAS

- ► Few large effect QTL
- But high prediction accuracy
 - ▶ Many small effect loci

Homeologous Epistasis GWAS

- ► Few large effect interactions
- ► Pattern genome-wide?
- ► Increase in prediction accuracy?

Additive vs 2-way Interactions

- Negative trend
- $ightharpoonup rac{1}{2} < d < 1$
- "less than additive"

Subfunctionalization

redundant function

Homeologous interactions explain much of non-additive genetic signal

- How much non-additive genetic signal is explained by homeologous interactions?
- $\sim 60-75\%$

Summary of Homeoallelic Epistasis

Homeoallelic interactions tend to be less than additive

► Suggests global subfunctionalization of homeologous orthologs

Homeoallelic pairs explain more than half of the non-additive genetic signal

▶ GY not affected, too polygenic to detect?

Opportunity to fix advantageous homeoallelic pairs

- Establish heterozygosity across subgenomes
- Immortalize through inbreeding

Allopolyploids are not diploids.

Co-Authors

- Mark Sorrells
- ▶ Jean-Luc Jannink

Small Grains

- David Benscher
- Amy Fox
- Jesse Chavez
- James Tanaka

Jannink & Sorrells Labs

- Lisa Kissing Kucek
- Lynn Veenstra
- Itaraju Brum
- Uche Godfrey Okeke
 - Marnin Wolfe
- Roberto Lonzano Gonzalez

USDA National Needs Fellowship (2013-2016)

