Using NGS-enabled genetics to improve marker selection and design in hexaploid wheat (Yr15)

Ricardo H. Ramírez-González
Wheat Yellow Rust

- *Puccinia striiformis.*
- Fungus.
- Traditionally controlled by resistance genes (for example, Yr15).
- Yr15 locus is an introgression from *T. dicocoides*
The Genome Analysis Centre

Progenitors

- Yr15
- Avs

F2 population

- 4 lanes Illumina HiSeq 2000
- RNA-Seq 100 bp, read pair

Sequencing

- Library No. of reads
 - Lane 1: 4x10^6
 - Lane 2: 3x10^6
 - Lane 3: 2x10^6
 - Lane 4: 3x10^6

Bioinformatics

- BWA-0.5.9
- bioruby-1.4.3
- bioruby-samtools 0.6.1
- blat-0.3.4
- exonerate-2.2.0
- MAFFT-7.055
- primer3-2.3.4

SNP Markers

- KASP Assays
- Genetic map
- Validation by breeders

Genotyping

- Homoeologous in IWGSC scaffolds
- Genome specific primer

d) Sequence Alignments

- NCBI Unigenes v60
 - 56,954 genes
- Krasileva’s gene models
 - 94,177 genes

Bulk Frequency Ratios

- SNPs between progenitors
- Ratio of alleles between bulks

e) SNP Markers

- Genetic map
- Validation by breeders

Resistant

- R1: 70 ind.
- R2: 67 ind.
- R3: 50 ind.

Susceptible

- S1: 15 ind.
- S2: 17 ind.
- S3: 13 ind.
a) Progenitors

Yr15 Avs

b) F2 population

Resistant Susceptible
R1: 70 ind. S1: 15 ind.
R2: 67 ind. S2: 17 ind.
R3: 50 ind. S3: 13 ind.

c) Sequencing

4 lanes Illumina HiSeq 2000
100 bp, read pair

No. of reads
Lib 1 2 3 4

No. of reads
1x10^8 2x10^8 3x10^8 4x10^8

d) Sequence Alignments

- NCBI Unigenes v60
 56,954 genes
- Krasileva’s gene models
 94,177 genes

Bulk Frequency Ratios

- SNPs between
 progenitors
- Ratio of alleles between
 bulks

- Homoeologous in
 IWGSC scaffolds
- Genome specific
 primer

e) SNP Markers

KASP Assays
Genetic map
Validation by breeders

- Primer design
 blat-0.5.4
 exonerate-2.2.0
 MAFFF-7.055
 primer3-2.3.4
Parental Plants

Avocet+Yr15 * Avocet

*Isogenic line developed by the University of Sydney
The Genome Analysis Centre

a) Progenitors

- Yr15
- Avs

b) F₂ population

- Resistant:
 - R1: 70 ind.
 - R2: 67 ind.
 - R3: 50 ind.
- Susceptible:
 - S1: 15 ind.
 - S2: 17 ind.
 - S3: 13 ind.

c) Sequencing

- 4 lanes Illumina HiSeq 2000
- RNA-Seq
- 100 bp, read pair

<table>
<thead>
<tr>
<th>Library</th>
<th>No. of reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3x10⁸</td>
</tr>
<tr>
<td>2</td>
<td>2x10⁸</td>
</tr>
<tr>
<td>3</td>
<td>1x10⁸</td>
</tr>
<tr>
<td>4</td>
<td>4x10⁹</td>
</tr>
</tbody>
</table>

d) Sequence Alignments

- NCBI Unigenes v60
 - 56,954 genes
- Krasileva’s gene models
 - 94,177 genes

- SNPs between progenitors
- Ratio of alleles between bulks

e) SNP Markers

- KASP Assays
- Genetic map
- Validation by breeders

f) Bioinformatics

- Primer design
 - Homoeologous in IWGSC scaffolds
 - Genome specific primer

g) Genotyping

- SNP Markers
 - KASP Assays
 - Genetic map
 - Validation by breeders

- Sequence Alignments
 - NCBI Unigenes v60
 - 56,954 genes
 - Krasileva’s gene models
 - 94,177 genes

- SNPs between progenitors
 - Ratio of alleles between bulks

- Primer design
 - Homoeologous in IWGSC scaffolds
 - Genome specific primer

- Resistant
 - R1: 70 ind.
 - R2: 67 ind.
 - R3: 50 ind.

- Susceptible
 - S1: 15 ind.
 - S2: 17 ind.
 - S3: 13 ind.
F₂ population

Avocet 'S' + Yr15

- **Resistant**
 - R1: 70 ind.
 - R2: 67 ind.
 - R3: 50 ind.

- **Susceptible**
 - S1: 15 ind.
 - S2: 17 ind.
 - S3: 13 ind.

Expected segregation: 3 resistant : 1 susceptible

χ² P = 0.049; 187 resistant and 45 susceptible F₂ plants
The Genome Analysis Centre

Progenitors

a) Yr15 Avs

F2 population

b) Resistant Susceptible
 R1: 70 ind. S1: 15 ind.
 R2: 67 ind. S2: 17 ind.
 R3: 50 ind. S3: 13 ind.

Sequencing

c) 4 lanes Illumina HiSeq 2000
 RNA-Seq
 100 bp, read pair

No. of reads
 4x10^6 3x10^6 2x10^6 1x10^6
 Lane 1 2 3 4

Genotyping

e) SNP Markers
 KASP Assays
 Genetic map
 Validation by breeders

d) Sequence Alignments
 - NCBI Unigene v60 56,954 genes
 - Krasileva’s gene models 94,177 genes

 Bulk Frequency Ratios
 - SNPs between progenitors bioruby-1.4.3
 - Ratio of alleles between bulks bioruby-samtools 0.6.1

 Primer design
 - Homoeologous in blat-0.3.4
 - IWGSC scaffolds exonerate-2.2.0
 - Genome specific MAFFT-7.055
 - Primer primer3-2.3.4

Resistance

b) R1: 70 ind. S1: 15 ind.
 R2: 67 ind. S2: 17 ind.
 R3: 50 ind. S3: 13 ind.

The Genome Analysis Centre
The Genome Analysis Centre

Transcriptome size

Wheat genome:
- ~17 Gbp
- Hexaploid AABBDD
- Coverage: ~2X

Wheat transcriptome:
- ~76 Mnt
- Prone to gene expression bias
- Coverage: ~440x

Coverage per Illumina HiSeq 2000 lane per manufacturer specification
RNA-Seq

Genomic DNA

Exon Intron Exon Intron Exon Intron

mRNA
RNA-Seq

4 lanes Illumina HiSeq 2000
100 bp, read pair

<table>
<thead>
<tr>
<th>Library</th>
<th>Lane</th>
<th>No. of reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1</td>
<td>1x10^8</td>
</tr>
<tr>
<td>R2</td>
<td>2</td>
<td>2x10^8</td>
</tr>
<tr>
<td>S3</td>
<td>3</td>
<td>3x10^8</td>
</tr>
<tr>
<td>R3</td>
<td>4</td>
<td>4x10^8</td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVS</td>
<td></td>
<td>4x10^8</td>
</tr>
<tr>
<td>Yr15</td>
<td></td>
<td>3x10^8</td>
</tr>
</tbody>
</table>
a) Yr15, Avs

b) F₂ population

- Resistant
 - R1: 70 ind.
 - R2: 67 ind.
 - R3: 50 ind.
- Susceptible
 - S1: 15 ind.
 - S2: 17 ind.
 - S3: 13 ind.

b) SNP Markers
- KASP Assays
- Genetic map
- Validation by breeders

c) Sequence Alignments
- NCBI Unigenes v60
 - 56,954 genes
- Krasileva’s gene models
 - 94,177 genes

- Primer design
 - Homoeologous in IWGSC scaffolds
 - Genome specific primer

- BWA-0.5.9
- biorep-1.4.3
- biorep-samtools 0.6.1
- blat-0.3.4
- exonerate-2.2.0
- MAFFT-7.055
- primer3-2.3.4

d) Sequence Alignments
- SNPs between progenitors
- Ratio of alleles between bulks

- Homoeologous in IWGSC scaffolds
- Genome specific primer
Gene coverage per sample

AVS

Yr15

UCW

NCBI UniGene
a) Progenitors

b) F2 population

F1 population

SNP Markers

SNP Markers
Bulk Frequency Ratios

Genomic Sequence

Avocet S
- 1AS: c t G t g G g a
- 1BS: c t T t g G g a
- 1DS: c t G t g G g a

Avocet S + Yr15
- 1AS: c t G t g G g a
- 1BS: c t T t g A g a
- 1DS: c t G t g G g a

✓ ✗
Bulk Frequency Ratios

Genomic Sequence

<table>
<thead>
<tr>
<th>Genomic Region</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avocet S</td>
<td>c t G t g G g a</td>
</tr>
<tr>
<td>Avocet S + Yr15</td>
<td>c t G t g G g a</td>
</tr>
</tbody>
</table>

Consensus from parental

- **Homoeologous**
 - 1AS: c t K t g G g a
 - 1BS: c t K t g A g a
 - 1DS: c t G t g G g a

- **Allelic**
 - 1AS: c t K t g G g a
 - 1BS: c t K t g R g a
 - 1DS: c t G t g G g a
Bulk Frequency Ratios

Genomic Sequence

Avocet S
1AS: c t G t g G g a
1BS: c t T t g G g a
1DS: c t G t g G g a

Avocet S + Yr15
1AS: c t G t g G g a
1BS: c t T t g A g a
1DS: c t G t g G g a

Consensus from parental

c t K t g

Homoeologous Allelic

c t K t g

Susceptible bulk

Position Reference 181 184

c t G t g G g a
.
T
T
A

SNP Index 184A:

184:

\[\frac{1}{8} = 0.125 \]

Resistant Bulk

Position Reference 181 184

c t G t g G g a
.
T
T
T

6:

\[\frac{6}{8} = 0.75 \]

Bulk Frequency Ratio:

\[\frac{0.75}{0.125} = 6 \]
BFRs near the 1B centromere

BFRs of SNPs mapping to chromosome 1B
Selection criteria

- **Origin (Yr15)**

- **Short arm Chromosome group 1**
 - 1A: 161 cM
 - 1B: 174 cM
 - 1D: 209 cM

- **BFR > 6**
Candidate selection

UCW gene models

From *Yr15* (11,230)

Putative genes with SNP: 16,022 (17.01%)
UCW gene models

Group 1S (554)

169
385
10,845

From Yr15 (11,230)

Putative genes with SNP: 16,022 (17.01%)
Candidate selection

UCW gene models

Group 1S (554)

147

287

98

22

10,364

481

42

From Yr15 (11,230)

BFR > 6 (643)

Putative genes with SNP: 16,022 (17.01%)
The Genome Analysis Centre

a) Progenitors

<table>
<thead>
<tr>
<th>Progenitors</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avs</td>
<td></td>
</tr>
<tr>
<td>Yr15</td>
<td></td>
</tr>
</tbody>
</table>

b) F₂ population

<table>
<thead>
<tr>
<th>Population</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistant</td>
<td>70</td>
<td>67</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

c) Sequencing

<table>
<thead>
<tr>
<th>Library Lane</th>
<th>No. of reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4x10⁸</td>
</tr>
<tr>
<td>2</td>
<td>3x10⁸</td>
</tr>
<tr>
<td>3</td>
<td>2x10⁸</td>
</tr>
<tr>
<td>4</td>
<td>1x10⁸</td>
</tr>
</tbody>
</table>

d) Sequence Alignments

- NCBI Unigene v60: 56,954 genes
- Krasileva's gene models: 94,117 genes

Bulk Frequency Ratios

- SNPs between progenitors
- Ratio of alleles between bulks

e) SNP Markers

- KASP Assays
- Genetic map
- Validation by breeders

Bioinformatics

- Primer design
 - Homoeologous in IWGSC scaffolds: blat-0.3.4
 - Genome specific: exonerate-2.2.0
 - Primer
 - primer3-2.3.4
Target SNP in 1B
SNP-1 A cgcat\texttt{t}tg\texttt{c}gc\texttt{y}gc\texttt{a}t\texttt{a}c\texttt{c}\texttt{g}gc\texttt{c}ct\texttt{K}tgGgaat\texttt{a}tt\texttt{t}\texttt{t}\texttt{g}\texttt{cag}\texttt{c}\texttt{g}\texttt{a}agg\texttt{g}ctg

SNP-1 B cgcat\texttt{t}tg\texttt{A}gc\texttt{g}gc\texttt{y}gc\texttt{a}t\texttt{a}c\texttt{c}\texttt{g}gc\texttt{c}ct\texttt{K}tgAgaat\texttt{a}tt\texttt{t}\texttt{t}\texttt{g}\texttt{cag}\texttt{c}\texttt{g}\texttt{a}agg\texttt{g}ctg
SNP-1 A cgcat\texttt{tG}gcgc\texttt{Y}gcgataccggcgcc\texttt{K}tgGgaatatttgcagcgaaggcgtg
SNP-1 B cgcat\texttt{tA}gcgc\texttt{Y}gcgataccggcgcc\texttt{A}tgAgaatat\texttt{t}ttgcagcgaaggcgtg
IWGSC-1A cgcat\texttt{tG}gcgcgcgcgcgcgcgcgcctGtgGgaatatttgcagcgaaggcgtg
IWGSC-1B cgcat\texttt{tA}gcgcgcgcgcgcgcgcgcctTtgGgaatat\texttt{t}ttgc---gaagggcgtg
IWGSC-1D cgcat\texttt{tA}gcgcTgcgataccggcgccTtgGgaatatttgcagcgaaggcgtg
SNP-1 A cgcat\textit{t}GcgYggtaccggcctKtgGaatatttcagcgaagggcgtg
SNP-1 B cgcat\textit{t}A cgYgtaccggcctKtgAaatatttcagcgaagggcgtg
IWGSC-1A gc\textit{c}atttGcgYgtacccgcccGaatatttcagcgaagggcgtg
IWGSC-1B gc\textit{c}atttA gcYgtacccgcccGaatattttgc---gaagggcgtg
IWGSC-1D ca\textit{t}tttGcgTgtaccggcctGaatattttgcagcgaagggcgtg

&

SNP

non-homoeologous
PolyMarker: Candidate SNP

SNP-1 A cgcatttGcggcYgczgataccg czgcctKtgGgaatatgnt gcagc gaaggcgtg
SNP-1 B cgcatttAcgcgygcgataccg czgcctKtgAgaatatttg cagcgaaggcgtg
IWGSC-1A cgcatttGcggcgcgcgataccg czgcctGtgGgaatatattgcagc gaaggcgtg
IWGSC-1B cgcatttAcgcgcgcgataccg czgcctTtgGgaatatgattgc---gagggcgtg
IWGSC-1D c--atttgGgcgcTgcgataccg czgcctGtgGgaatatttg cagcgaaggcgtg

SNP homoeologous
PolyMarker: Genome Semi-Specific

SNP-1 A cgcat\texttt{t}tGgcgcGgcataccggcgcctKtg\texttt{G}gaatattgcagcgaaggcgtg

SNP-1 B cgcat\texttt{t}tAgcgcGgcataccggcgcctKtgAgaatattgcagcgaaggcgtg

IWGSC-1A cgcat\texttt{t}tGgcgcGgcataccggcgcctGtgGgaatattgcagcgaaggcgtg

IWGSC-1B cgcat\texttt{t}tAgcgcGgcataccggcgcctTtgGgaatattgc\texttt{A}---gaaggcgtg

IWGSC-1D c\texttt{A}--atttGgcgcGgcataccggcgcctGtgGgaatattgcagcgaaggcgtg

semi-specific
PolyMarker: Genome specific

SNP-1 A cgcat\text{ttG}cgYgcgataccggcgcctKtgG\text{gaatat}tg\text{tgcagcgaaggcgtg}
SNP-1 B cgcat\text{ttA}cgYgcgataccggcgcctKtgA\text{gaatatttgcagcagggcgtg}
IWGSC-1A cgcat\text{ttG}cgcgcgcgcgcgcgtcKtgG\text{gaatat}ttg\text{cagcagggcgtg}
IWGSC-1B cgcat\text{ttA}gcgcgcgcgcgcgcctTtgG\text{gaatat}ttgc---\text{cagcagggcgtg}
IWGSC-1D c--\text{ttG}gcgcTgcgcgcgcgcgcctTtgG\text{gaatat}ttgcagcagggcgtg

-------:-----c-------------T--&----------------------

specific
PolyMarker: Selected primer

Tested with Primer3

SNP-1 A cgctttGcgctYgcgcctKtgGgaatatttcagccagggctg
SNP-1 B cgctttAgcgcYgcgcctKtgAgatatttgcagggctg
IWGSC-1A cgctttGcgcgcgcctKtgGgaatatttcagccagggctg
IWGSC-1B cgctttAgcgcYgcgcctKtgGgaatatttcagccagggctg
IWGSC-1D cgctttGcgcTgcgcctKtgGgaatatttcagccagggctg

Request primers

PolyMarker is an automated bioinformatics pipeline for SNP assay development which increases the probability of generating homoeologue-specific assays for polyploid wheat. PolyMarker generates a multiple alignment between the target SNP sequence and the IWGSC chromosome survey sequences \cite{IWGSC2014} for each of the three wheat genomes. It then generates a mask with informative positions which are highlighted with respect to the target genome.

See \url{About} to know how to prepare your input.

We have \url{designed primers} for the iSelect 90K chip.

Upload File:

Email:

Upload
The Genome Analysis Centre

Progenitors

- Yr15
- Avs

F2 population

- Resistant
- Susceptible
- R1: 70 ind.
- R2: 67 ind.
- R3: 50 ind.
- S1: 15 ind.
- S2: 17 ind.
- S3: 13 ind.

Sequencing

- 4 lanes Illumina HiSeq 2000 RNA-Seq
- 100 bp, read pair
- Library No. of reads
- Lane

Bioinformatics

- BLAST v.0.8.5
- Bioruby-1.4.3
- BioRuby-Samtools 0.6.1
- Blat-0.3.4
- Exonerate-2.2.0
- Mafft-7.055
- Primer3-2.3.4

Genotyping

- SNP Markers
- KASP Assays
- Genetic map
- Validation by breeders

- SNPs between progenitors
- Ratio of alleles between bulks

- Homoeologous in IWGSC scaffolds
- Genome specific primer

SNP Markers

- NCBI Unigenes v68 56,954 genes
- Krasileva’s gene models 94,177 genes

Sequence Alignments

- BWA-0.5.9
- BioRuby-1.4.3
- BioRuby-Samtools 0.6.1

Bulk Frequency Ratios

- SNPs between progenitors
- Ratio of alleles between bulks

- Homoeologous in IWGSC scaffolds
- Genome specific primer

The Genome Analysis Centre
Validation on breeding germplasm

<table>
<thead>
<tr>
<th>SNP haplotype</th>
<th>Reaction to P. striiformis</th>
</tr>
</thead>
<tbody>
<tr>
<td>R11</td>
<td>R5</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>T</td>
<td>G</td>
</tr>
</tbody>
</table>

Validation on 113 UK varieties
a) Progenitors

b) F_2 population

- Yr15
- Avs

R1: 70 ind.
R2: 67 ind.
R3: 50 ind.
S1: 15 ind.
S2: 17 ind.
S3: 13 ind.

SNP Markers
- KASP Assays
- Genetic map validation by breeders

c) Sequencing
- 4 lanes Illumina HiSeq 2000
- RNA-Seq
- 100 bp, read pair

Lane
- 1
- 2
- 3
- 4

No. of reads
- 4x10^8
- 3x10^8
- 2x10^8
- 1x10^8

Bulk Frequency Ratios
- SNPs between progenitors
- Ratio of alleles between bulks

d) Sequence Alignments
- NCBI Unigenes v60
- 56,954 genes
- Krasileva's gene models
- 94,177 genes

- BWA-0.5.9
- bioruby-1.4.3
- bioruby-samtools 0.6.1
- blat-0.3.4
- exonerate-2.2.0
- MAFFT-7.055
- primer3-2.3.4

- Homoeologous in IWGSC scaffolds
- Genome specific primer

PolyMarker

The Genome Analysis Centre
Acknowledgments

• TGAC
 – Mario Caccamo
 – Sarah Ayling
 – Paul Bailey
 – Jon Wright

• JIC
 – Cristobal Uauy
 – Nick Bird
 – Vanesa Segovia
 – Martin Trick

• Limagrain
 – Paul Fenwick
 – Simon Berry

• RAGT Seeds
 – Sarah Holdgate
 – Peter Jack

• University of Sidney
 – Robert McIntosh
Thank you for listening.