
The intracellular immune receptor repertoire of wheat

Burkhard Steuernagel

Plant Pathogen Interaction

John Innes Centre

Consensus structure of a CC-NLR

Jupe et al. BMC Genomics 2012, 13:75 http://www.biomedcentral.com/1471-2164/13/75

RESEARCH ARTICLE

Open Access

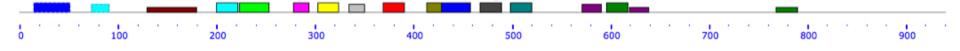
Identification and localisation of the NB-LRR gene family within the potato genome

Florian Jupe^{1,2}, Leighton Pritchard³, Graham J Etherington², Katrin MacKenzie⁴, Peter JA Cock³, Frank Wright⁴, Sanjeev Kumar Sharma¹, Dan Bolser⁵, Glenn J Bryan¹, Jonathan DG Jones² and Ingo Hein^{1*}

Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotidebinding superfamily

Blake C. Meyers , 12, , Allan W. Dickerman, 3, Richard W. Michelmore,

1 Subramoniam Sivaramakrishnan, 1 4 Bruno W. Sobral, and 3 Nevin D. Young 5,

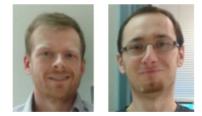

Jupe et al. BMC Genomics 2012, 13:75 http://www.biomedcentral.com/1471-2164/13/75 BMC Genomics

RESEARCH ARTICLE

Open Access

Identification and localisation of the NB-LRR gene family within the potato genome Florian Jupe^{1,2}, Leighton Pritchard³, Graham J Etherington², Katrin MacKenzie⁴, Peter JA Cock³, Frank Wright⁴,

Sanjeev Kumar Sharma¹, Dan Bolser⁵, Glenn J Bryan¹, Jonathan DG Jones² and Ingo Hein^{1*}

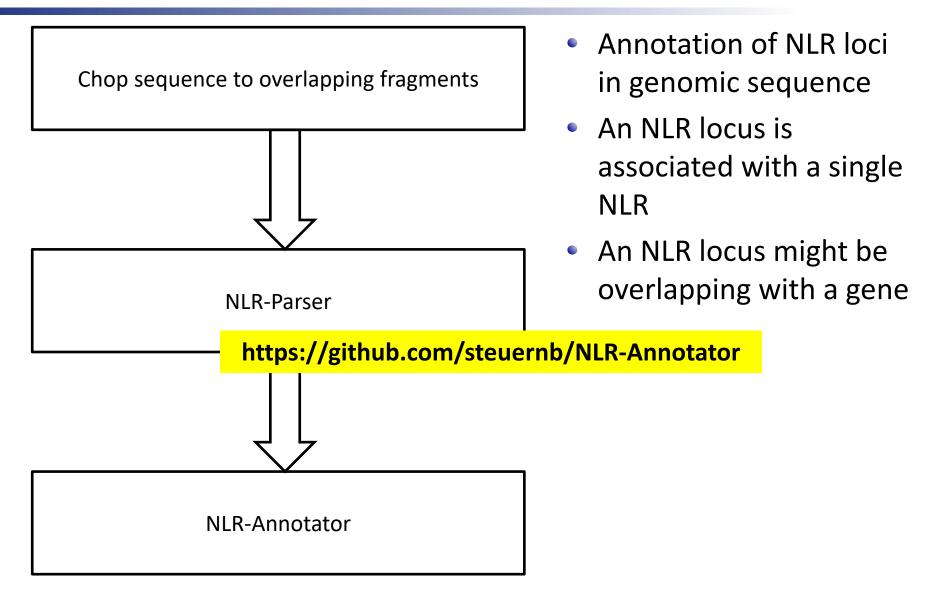


conti conti conti conti conti conti conti cont conti conti conti cont cont cont conti cont conti conti conti conti

Bioinformatics Advance Access published February 5, 2015

NLR-parser: rapid annotation of plant NLR complements

Burkhard Steuernagel^{1,*,†}, Florian Jupe^{2,*,†,‡}, Kamil Witek², Jonathan D.G. Jones² and Brande B.H. Wulff¹


2Blades

John Innes Centre

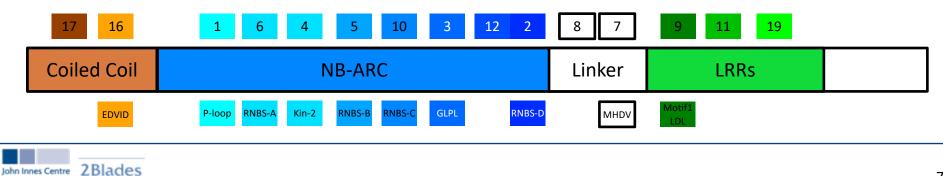
Lielsching Nature's Divertify

0,2010	nplete	strand	start	end	1st-motif-frame NB-ARC	2-NBLRR-Signal	MotifList
	tial	forward	38	740	2 N/A	FALSE	12,2,8,7,11,11,9
	tial	forward	18	1297	0 LCFSVIGMHGVGGYG	STL FALSE	1,6,4,5,10,3,2,8,7,9
	tial	forward	132	837	0 N/A	FALSE	12,2,8,7,9,11
	nplete	reverse	33	3933	1 KYCADGLTMLHIVGPG	GIG TRUE	17, 16, 9, 1, 6, 4, 5, 10, 3, 12, 2, 8, 7, 15, 19, 11, 11, 11, 11, 11, 11, 11, 11, 11
	tial	forward	320	908	2 MDARKKLKVVSIVGIG	ILG FALSE	17,16,14,1
	tial	reverse	246	2387	1 NSRDGLCKVICVVGM0	GLI FALSE	1,6,4,5,3,12,2,8,7,9,11
	tial	reverse	37	2520	1 PDNNRGCKVVSVWG	IGC FALSE	17,6,4,5,1,6,4,5,10
OVFORD	tial	reverse	270		0 N/A	FALSE	16,11,6,4,5
OXFORD	tial	reverse	52	934	1 N/A	FALSE	3,12,2,8,7,9,11,9
	tial	reverse	72	774	0 NSLTKHRKVLSIVGFGG	LGN FALSE	17,16,1,6
ing_ours_a point	(prential	reverse	286	976	2 DDKEMQLKVVAIVGS	GLI FALSE	17,16,14,1,6
tig_3289_1 CNL	partial	reverse	6	711	2 GSDDVECSLITLTGMG	GLG FALSE	17,16,1,6
tig_17782_1 CNL	partial	reverse	945	1992	2 N/A	FALSE	5,10,3,12,2,8,7,9,9
tig_678_1 CNL	partial	reverse	264		2 VDNDYLLSVVSIVAMG	GAC FALSE	17,1,6,4,5,10,3,12,2,8,7,9,9,9,11,11
tig_1224_2 CNL	partial	reverse	185	1025	0 N/A	FALSE	3,12,2,8,7,11,11,9
tig_8213_1 CNL	partial	reverse	83		2 N/A	FALSE	19,17,16,14
tig_10715_1 CNL	partial	reverse	338	1115	1 EERMTELPVLPIVGMG	GVC FALSE	16,1,6,4,5
tig_11902_1 CNL	partial	reverse	263	3965	0 ETKDEGISVFAIVGNGG	VG FALSE	1,6,4,5,10,3,12,2,8,7,9,11,11,11,11,11,11,11,11,11,11
tig_15355_1 N/A	partial	reverse	163	424	0 N/A	FALSE	5,10,3
tig_9193_1 N/A	partial	forward	167	1964	2 N/A	FALSE	9,4,9,11,11,20,9,11,11,11,11,9,11,11
tig_10690_1 TNL	partial	forward	475	849	1 QAHHQVFLFWW*FEL	VVV FALSE	1,4,5
tig_9296_1 CNL	partial	forward	5	740	2 N/A	FALSE	3,12,2,8,7,9
tig_2126_1 CNL	partial	reverse	1273		0 N/A	FALSE	10,3,12,2,8,7,11,9,9,20
tig_5402_1 N/A	partial	reverse	96	438	1 N/A	FALSE	4,5,10,3
tig_3210_1 CNL	partial	forward	224	983	2 DLEQQQLKVVAVLGPS		16,1,6,4
tig_3416_1 CNL	partial	reverse	126		1 FIKDYLVGMVGIWGP	GV FALSE	1,6,4,5,10,3,2,7,9,11,9
tig_4215_1 CNL	partial	forward	982		1 AIAREGISIIPIVGLGGLG		17,16,1,6,4,5,10,3,2
tig_1121_1 CNL	partial	forward	271		1 KEGNTNIMVVAVVGV		17,16,1,6,4,5,10
tig_1327_1 CNL	partial	reverse	189	1209	2 KEVNDGIMVVAIVGV		17,16,1,6,4,5,10
tig_2229_1 CNL	partial	forward	549		0 QQHQQKVHVLPIFGM		16,1,6,4,5,10
tig_4861_2 CNL	partial	forward	438	861	0 NKDLQHFHVISLWGM	GGI FALSE	1,6,4,5,10

NLR-Annotator

NLR-Annotator on other genomes

Species	Source	NLRs
Coffee	http://coffee-genome.org	932
Maize	http://ensembl.gramene.org	154
Рарауа	Phytozome	50
Cucumber	Phytozome	71
Soybean	Phytozome	527
Brachypodium	Phytozome	342

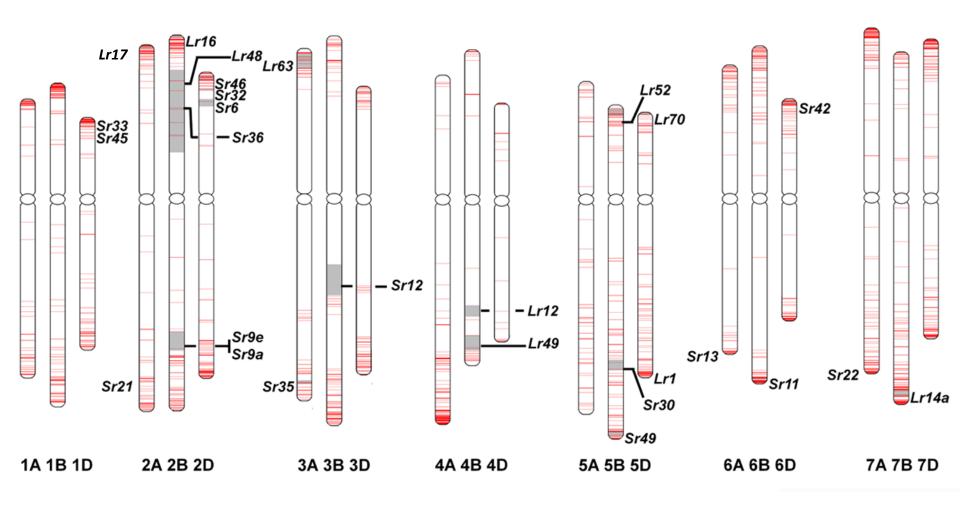


NLR-Annotator on wheat assemblies

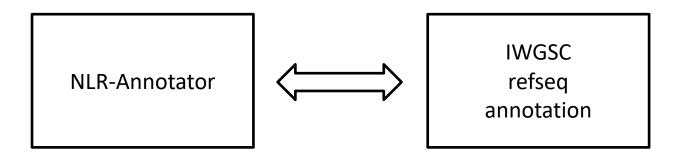
Uklacking, Natwo's Diversity

Assembly	NLRs total	NLRs complete
IWGSC 2014	12441	1050
Meraculous	15315	1249
w2rap	3251	2465
Masurca	3568	2731
IWGSC refseq v1.0	3400	2580

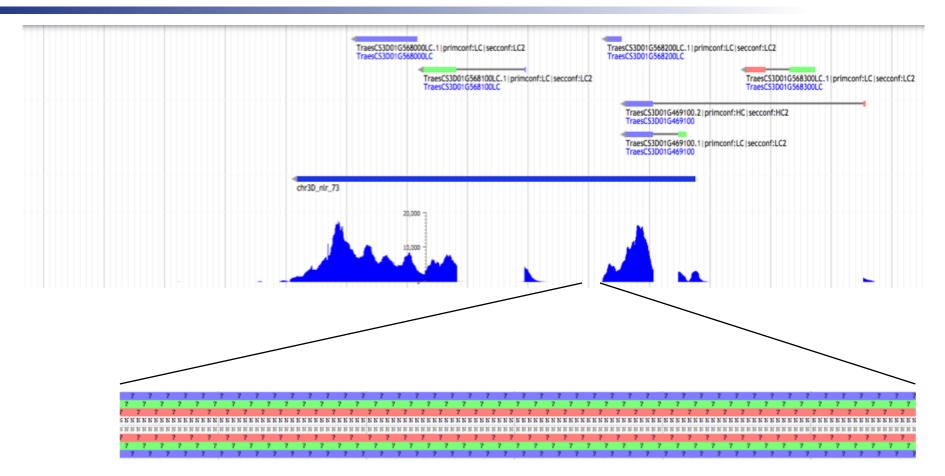
Complete NLRs have at least 3 consecutive NB-ARC motifs, the motif1/p-loop and at least one LRR.


Integrating *R* gene markers with NLR loci

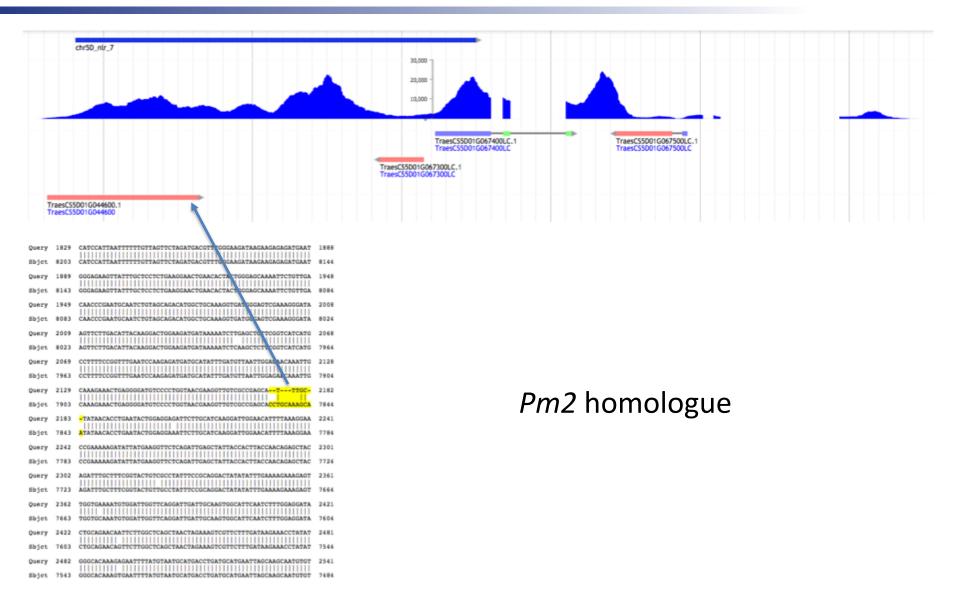
- Literature research for *Sr* and *Lr* gene
- Blast markers to refseq
- Evaluate distance and NLR loci in between
- Highlights
 - *Sr6*: 1NLR
 - *Lr13*: 3NLR
 - *Lr16*: 5NLR
 - *Lr49*: 3NLR
 - *Lr65*: 2NLR
 - *Lr70*: 5NLR



Integrating R gene markers with NLR loci

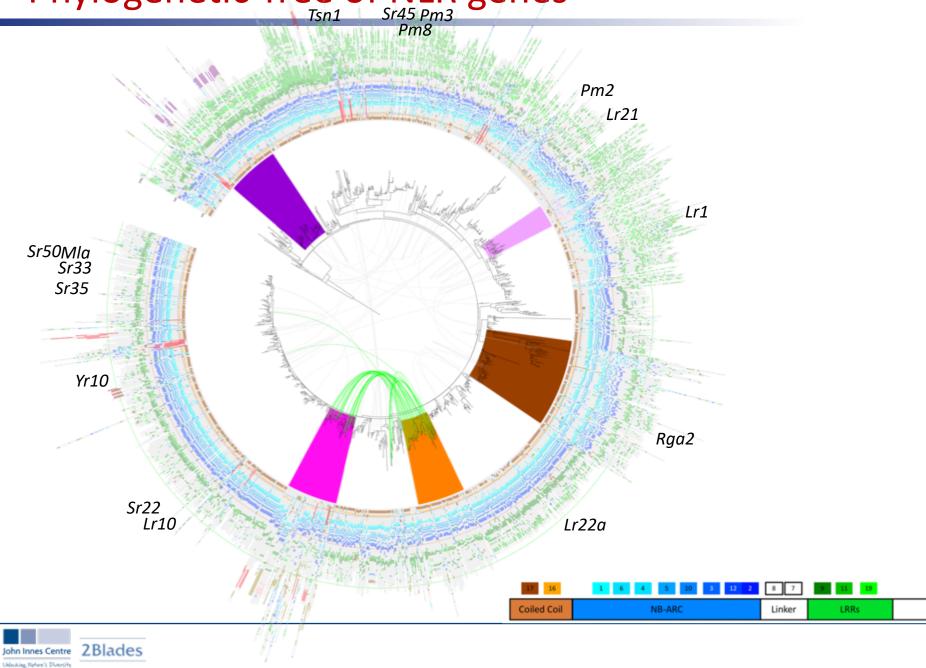

NLR loci vs. genes

- Of 3,400 NLR loci 2,914 overlap with genes
- 632 of those overlap with more than one gene
- 3506 genes overlap with an NLR locus
- 198 genes overlap with more than one NLR locus

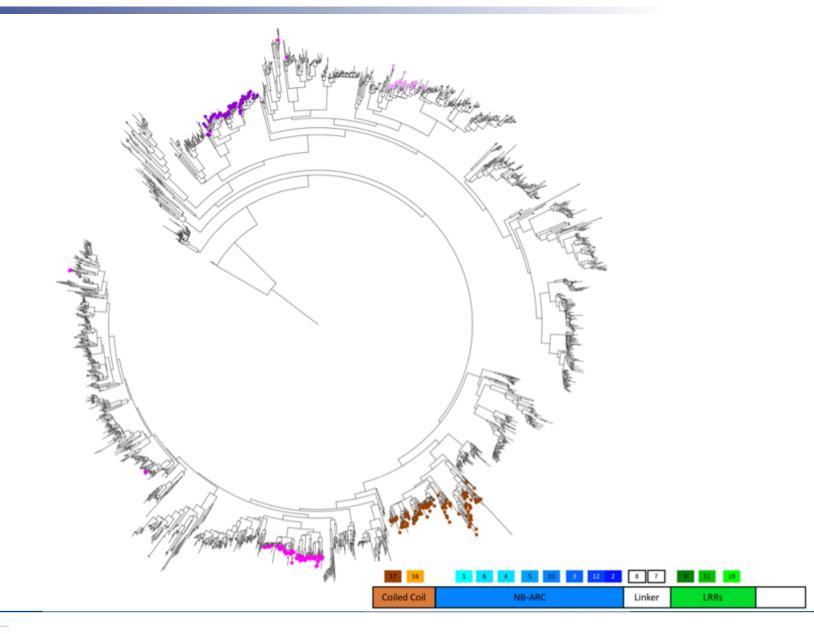


1 NLR overlapping with several genes

1 NLR overlapping with several genes


John Innes Centre 2Blades

NLR gene annotation in Chinese Spring


- The current annotation v. 1.0 is not perfect
- Manual annotation required
- Reference genomes are constantly being improved
- Too much effort for little gain
- We use available data for analysis, well knowing it is a subset

Phylogenetic Tree of NLR genes

Phylogenetic studies on loci

Summary

- NLR-Annotator annotates NLRs in genome assemblies
- Candidate gene approaches
- Limitations in RefSeq v1.0 annotation
- Phylogenetic characterization

Acknowledgements

Brande Wulff Kamil Witek Jonathan Jones Simon Krattinger David Swarbreck Ksenia Krasileva Erin Baggs

2Blades

John Innes Centre

Unlocking Nature's Diversity

