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Summary of achievements
1. We have produced a high quality, genetically anchored, assembly of chromosome 7A

2. The assembly has been validated using independent genome-level information for specific 
regions of the chromosome

3. The assembly now forms the basis for the analysis of agronomically significant chromosome 
regions
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● High-density composite genetic map
based on MAGIC using CSxRenan 
map as anchor

○ Over 4000 markers
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● 732 physical contigs reduced to 316 scaffolds
● 676 physical contigs (92%) anchored via 

scaffolded physical map



Super-scaffolding
Final stats for paired-end-only (pre-mate-pair) assembly:
● 42,441 sequence scaffolds

○ Total length 940Mb
○ N50 137kb
○ Mean 22kb

A large mate-pair dataset was generated by National Research Council, Canada 
(Andy Sharpe) from a Chinese Spring+7EL line, including 12 insert library sizes from 
1.4kb to 20kb.
The read pairs aligning perfectly (no mismatches) to our paired-end-only draft 
assembly were provided by David Konkin and used for super-scaffolding with 
SSPACE.
The minimum number of mate-pair joins required to connect two contigs (k) was 
explored, using k = 2 to 5.
For example, for k = 2, two scaffolds can be joined based on only two connections.



Two scaffolding approaches were explored:

Super-scaffolding stats

k # 
Scaffolds

Median 
(bp)

Mean 
(bp)

N50 
(bp)

Max 
scaffold 
(bp)

Total 
length 
(bp)

% cross-
pool joins

2 23,342 4,732 38,839 350,507 2,814,297 906.5e6 3.9

3 27,659 3,941 32,704 289,304 2,148,657 904.5e6 1.6

4 30,690 3,631 29,463 249,246 2,127,911 904.2e6 1

5 33,426 3,449 27,032 214,649 2,117,720 903.5e6 0.7

1) Chromosome-arm level scaffolding 2) BAC pool-level scaffolding
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5 20,416 2,789 44,242 315,060 1,979,523 903.2e6
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Needs validation, eg: with Bionano maps
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From long- to short-range information

Genetic map Physical map

Assembled sequence +
annotation
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Fig 1B, Choulet et al. (2014)
CDS/10Mb on chromosome 3B
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Pseudomolecule genes of interest
Gene density per 10kb
(TriAnnot annotation) 

0.5 0

granule bound starch synthase 1

avenin

starch synthase 1

puroindolin

starch branching enzyme 1 x 3

yield QTL 1

yield QTL 2

powdery mildew resistance

cluster of transcription factors



Genetic map
● A composite map using the MAGIC 8-way cross population (Emma Huang, 

Colin Cavanagh, CSIRO and GBS by Matt Hayden, DEPI) with the 
Chinese Spring/Renan map (INRA) as an “anchor”. Generated with the 
following procedure:

1. We choose to “trust” the physical map - hence (ideally) we want all 
markers in a given physical contig to co-locate in the map

* Based on work done at CSIRO with Jen Taylor, Emma Huang, Penghao Wang, Stuart Stephen
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Genetic map
● A composite map using the MAGIC population (Emma Huang, Colin 

Cavanagh, CSIRO and GBS by Matt Hayden, DEPI) with the Chinese 
Spring/Renan map (INRA) as an anchor. Generated with the following 
procedure:

3. Take representative from each group, essentially collapsing contigs
4. Using this data, build clusters around framework markers in CS x Renan
5. Order markers within clusters
6. Estimate positions from full marker order
7. Expand out contigs - forces all markers within a contig to be at same position



Example of a split contig

The markers mapping to this 
physical contig, 7AS-12251, 
separate into two distinct 
locations in the genetic map.



Example of a split contig

The markers mapping to this 
physical contig, 7AS-12251, 
separate into two distinct 
locations in the genetic map.

Likely caused by 
this repeat 
complex (“blob”) 
(cf. talk by by 
Thomas Wicker)



Validating genetic map

7A POPSEQ v1 map
(Mascher et al. 2013)
shows good alignment 

MAGIC/CSxR reference 
map shows high 
resolution, with increased 
detail around centromere



Powdery mildew locus on 7AL



Powdery mildew locus on 7AL

Ouyang et al. 2014



Powdery mildew locus on 7AL

Adapted from Ouyang et al. 2014



Powdery mildew locus on 7AL

7AL-11771
227.4 cM

7AL-11973
227.5 cM

7AL-303
228.1 cM



Powdery mildew locus on 7AL

This provides important 
validation of our map by a 
completely independent 
source

7AL-11771
227.4 cM

7AL-11973
227.5 cM

7AL-303
228.1 cM



Powdery mildew locus on 7AL
Two genes stand out as candidate genes 
for powdery mildew resistance:
Disease resistance protein RPP8
Putative disease resistance protein RGA4

Adapted from Ouyang et al. 2014



Powdery mildew locus on 7AL
Two genes stand out as candidate genes 
for powdery mildew resistance:
Disease resistance protein RPP8
Putative disease resistance protein RGA4

Adapted from Ouyang et al. 2014

 * Evidence for Pwd gene 
in 7AL-11973 also 
supported by data from 
Kuldeep Singh



Next steps
● Bionano optical mapping data is being generated

(Hana Simkova/Jaroslav Dolezel, Mingcheng Luo) 
from flow-sorted DNA (Dolezel lab)

● Annotation - manual effort
● Diversity analysis and comparison to

T. urartu/T. monococcum assembly

7A map vs. T. 
monococcum 90k SNP 
map (DNA from Jorge 
Dubcovsky, SNP map by 
Kerrie Forrest and Matt 
Hayden) 
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Large inversion?
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