Epi3B

Joint Research Unit on the Genetics, Diversity and Ecophysiology of Cereals (GDEC), Clermont-Ferrand, France

Joint EUCARPIA Cereal Section & I•T•M•I Conference IWGSC workshop 29-06-2014

- Introduction on epigenetics and chromatin states
- ✤ Aim and strategy of the epi3B project
- First results from mapping and peak calling

Epigenetic examples

The term « epigenetics» describes (heritable?) patterns of phenotypic variation that are not attributable to differences in DNA sequence.

(Eichten et al., 2014)

Vernalization in temperate cereals

A winter wheat crop in February 2013 at INRA-GDEC site. (photo by S. Toillon)

Seedlings required an exposure to low temperature in order to ensure flowering and grain development in spring and summer.

- ✤ Activation of the key locus gene VRN1
- Alteration of 2 epigenetic marks in barley

Epigenetic examples

The term « epigenetics» describes heritable patterns of phenotypic variation that are not solely attributable to differences in DNA sequence.

(Eichten et al., 2014)

Hybrid vigour in plants

Superior performance in yield or biomass of an offspring compared to its 2 distinct parental lines.

Parent 1 ear (left), hybrid ear (middle), parent 2 ear (right). University of Nebraska-Lincoln, 2004.

Chromatin & histones

Chromatin & epigenetic marks

Chromatin states

Eukaryotic chromatin : euchromatin and heterochromatin domains

Chromatin states define by the position of marks along features of a chromosome.

Roudier et al., 2011

Challenges

In bread wheat genome-wide studies have been limited due to :

- the lack of reference sequences
- large genome size & allohexaploidy
- high repeat content (>80%)

120-fold *A. thaliana* genome 45-fold rice genome

Aim of the Epi3B project

In bread wheat genome-wide studies have been limited due to :

- the lack of reference sequences
- large genome size & allohexaploidy
- high repeat content (>80%)

120-fold *A. thaliana* genome 45-fold rice genome

BUT

The first reference sequence of the chromosome 3B is now available.

The aim of the Epi3B project is **to explore the epigenomic landscape** along the chromosome 3B

- Explore the localization/combination of epigenetic marks around genes
- Define chromatin states along the chromosome
- Investigate the distribution patterns of the epigenomic marks according the gene density,

gene expression, recombination hotspots or other features of the gene space.

- Collection of whole genome fraction according to each antibody
- Negative control for each ChIP (specificity of beads to antibodies only)

• We aim to target (only) genes on the 3B chromosome (liquid hybridization to capture sequences)

Size capture sequences : 36Mb

Enrichment of epigenetic marks of the 3B.

Each sample has an average of 103 millions quality trimmed read pairs (QC >30).

6 samples in duplicate : Histone 3, H3K4me2,H3K4me3, H3K36me3, H3K27me3, 5mCytosine

Capture efficiency

36MB of capture (=gene fraction) targeted on 3B \longrightarrow 0.21% Capture efficiency on-target → 21% Capture enrichment (from 0.21% to 21%) \rightarrow 100X % bases covered on the capture \rightarrow 99% 68.2Kb **Capture design INPUT** Pair reads position

Results Mapping

• bwa with no mismatch in seeds and 2 mismatches allowed in read

	H3K36me3	H3K36me3	H3K4me2	H3K4me2 (rep	met Cyt	met Cyt
	(rep 1)	(rep 2)	(rep1)	2)	(rep1)	(rep2)
% coverage along capture design	40	38	13	13	4	5

Tablet visualization, Milne et al., 2013

	H3K36me3 (rep 1)	H3K36me3 (rep 2)	H3K4me2 (rep1)	H3K4me2 (rep 2)	met Cyt (rep1)	met Cyt (rep2)
Spearman coefficient IDR (Irreproducibility discovery rate)	0.78		0.87		0.97	
Nb peaks common between biological replicates on capture design	2915		2247		395	

	H3K36me3 (rep 1)	H3K36me3 (rep 2)	H3K4me2 (rep1)	H3K4me2 (rep 2)	met Cyt (rep1)	met Cyt (rep2)
Spearman coefficient IDR (Irreproducibility discovery rate)	0.78		0.87		0.97	
Nb peaks common betweenbiological replicates on2915capture design		2247		395		

• All chIP and MeDIP experiments and data sequencing were successfully achieved

• Reads mapping and peak detection for each sample are currently running (test other softwares for peak calling –CCAT, FindPeak, SICER)

The Epi3B project aims

- to define chromatin states in a polyploid species
- to better characterize the genic space

 to determine the impact of the epigenetic marks on the transcriptional level of genes

Ultimately, these epigenomic maps will be useful resource to identify the structural and functional organization of the chromosome 3B in a polyploid context. Acknowledgements

Group SEVEN

Helene Rimbert, Biogemma

Pr. Christophe Tatout Dr. Aline Probst Matthias Benoit

