# **PROGRESS ON PHYSICAL MAP OF WHEAT CHROMOSOME 5A**

### LUIGI CATTIVELLI **CRA -GENOMICS RESEARCH CENTRE** ITALY HTTP://CENTRODIGENOMICA.ENTECRA.IT/





Wheat Genome Sequencing Consortium



## **PHYSICAL MAP OF WHEAT CHROMOSOME 5A**







International Wheat Genome Sequencing Consortium



## **BAC Library Fingerprinting and Contig Assembly**



#### **BAC fingerprinting**

 ✓ All BAC clones were fingerprinted using SnaPshot method.

✓ 75,995 high quality fingerprints after contamination removal.



#### Useful fingerprints were assembled using FPC according to IWGSC rule and a first MTP (MTP-FPC) was established after automated assembly.

 ✓ Several successive cutoffs were used from 1e-75 to 1e-25
 ✓ 1,308 contigs for 5AS
 ✓ 2,556 contigs for 5AL

|                                           | 5AS               |                   | 5AL               |                   |
|-------------------------------------------|-------------------|-------------------|-------------------|-------------------|
| CHROMOSOME ARM SIZE (Mbp)                 | 295               |                   | 532               |                   |
| # FINGERPRINTED CLONES                    | 44.740            |                   | 51.072            |                   |
| INSERT SIZE (Kbp)                         | 120               |                   | 123               |                   |
| COVERAGE                                  | 16.5X             |                   | 10.4X             |                   |
| ASSEMBLY METHOD                           | FPC               | LTC               | FPC               | LTC               |
| ASSEMBLY STRINGENCY                       | 10 <sup>-45</sup> | 10 <sup>-20</sup> | 10 <sup>-45</sup> | 10 <sup>-15</sup> |
| # USEFUL FINGERPRINTS                     | 36.165 (80.8%)    |                   | 39.830 (76.0%)    |                   |
| # CLONES IN CONTIGS                       | 25,084            | 26,659            | 27,764            | 29,610            |
| # SINGLETONS                              | 11,081            | 9,506             | 12.066            | 10.220            |
| # MTP CONTIGS                             | 1,308             | 652               | 2.556             | 1.504             |
| # MTP CLONES                              | 4,201             | 5,412             | 6.560             | 8.709             |
| ESTIMATED CHR COVERAGE (%) <sup>a,c</sup> | 106               |                   | 103               |                   |
| CONTIGS N50 (Kb) <sup>b,c</sup>           | 271               |                   | 229               |                   |
| CONTIGS L50 (Kb) <sup>b</sup>             | 353               |                   | 822               |                   |

a: based on the total number of contigs b: based on a CB unit size of 1.2 kb for SnaPshot c: based on the expected size of the chromosome arm

The same useful fingerprints were also assembled using LTC according to Frenkel et al. 2010 guidelines and a second MTP (MTP-LTC) was established after automated assembly

✓ 652 contigs for 5AS

✓1,504 contigs for 5AL

## 3D Pools of 5A MTP (FPC- and LTC-)



Anchoring between the genetic and physical map

## **Genetic Mapping**

### **4 SEGREGATING POPULATIONS:**

- > 383 F2 Chinese Spring (CS) x Renan (*T. aestivum* x *T. aestivum*)
- 188 RILs from Chinese Spring x CS-*T. dicoccoides* Disomic Substitution 5A TDIC (5A CS) (*T. aestivum* x *T. turgidum dicoccoides*)
- > 132 RILs from DV92 x G3116 (*T. monococcum* x *T. monococcum*)
- > 124 RILs from Latino x MG5323 (*T. turgidum* ssp *durum* x *T. turgidum* ssp *dicoccum*)

## SEVERAL CLASSES OF MOLECULAR MARKERS:

- > TE junction-based markers (ISBP, RJM, RJJM) and SSRs from survey sequencing of 5AS
- SSRs and SSR-ESTs from literature
- COSs

The RILs of Latino x MG5323 have also been hybridized with the Illumina 90K chip and about 500 SNPs have been mapped on 5A.

The integration of this map with other 6 durum wheat maps is leading to more than 1000 SNPs mapped on 5A.

# **Anchoring of FPC-MTPs**

Screening of MTP-3D pools using PCR with all available markers (SSRs, EST, COS and TE-derived)

## anchoring of contigs using a dedicated scripting



179 markers positive for at least one BAC



170 contigs anchored by at least one marker



total length anchored: 41 Mb of 5AS and 13 Mb of 5AL

## Integration FPC- and LTC-MTPs



## Integration FPC- and LTC-MTPs

Integration between FPC-MTP and LTC assembly





| FPC ASSEMBLY integrated with LTC     | 5AS    | 5AL      |
|--------------------------------------|--------|----------|
| all anchored markers                 | 134    | 60       |
| EST and COS                          | 6      | 10       |
| SSR and SSR-EST                      | 37     | 44       |
| STS                                  | 1      | 5        |
| TE-based                             | 90     | 1        |
| FPC unique contigs                   | 122    | 48       |
| total length anchored (kb)           | 41,139 | 12,905 👞 |
| FPC unique contigs after integration | 309    | 96       |
| total length anchored (kb)           | 96,068 | 23,744   |
| chromosome percentage                | 32,6   | 4,5      |
| chromosome arm size (Mbp)            | 295    | 532      |
|                                      |        |          |

5AS: 96 Mb 5AL: 24 Mb



# **Anchoring of LTC-MTPs**





A15K Agilent custom microarray was designed <u>4,722 sequences</u> deriving from several sources:

- Genome Zipper reads
- 5A ESTs from GrainGenes database
- RFLPs, SNPs, SSRs, TE-based junction markers

### 12,676 probes have been developed



Hybridizations are underway...

## **FPC-MTP BAC End Sequencing**

### **5AS-FPC-MTP**

2,487 clones recovered 3,862 good quality reads (78%) representing 2.8 Mb average length 715 bp

2,307 ISBP markers 72 SSRs (di- tri- tetra-nucleotide)

### **5AL-FPC-MTP**

2,835 clones recovered 5,194 good quality reads (92%) representing 3.3 Mb average length 650 bp

2,641 ISBP markers52 SSRs (di- tri- tetra-nucleotide)

1,964 ISBPs (considering only one markers per sequence) + 124 SSRs ready to be mapped onto radiation hybrid panel

# A radiation hybrid panel for 5A



Approx. 390 crosses performed
for each nullisomic line
Nulli5Atetra5B → 3500 seeds
Nulli5Atetra5D → 5600 seeds





## **Collaborations..**

### Yellow rust (5AL)

with Jorge Dubcovsky University of California, Davis, CA, USA

### Fusarium headblight, FHB QTL (5AS)

with Hermann Buerstmayr Institute for Biotechnology in Plant Production, Tulln, AUSTRIA





### Yellow mosaic virus (WYMV) (5AL)

with Xiue Wang Nanjing Agricultural University, Nanjing, CHINA

### **5AL-4AL breakpoints**

with Chunji Liu CSIRO Plant Industry, Queensland Bioscience Precinct, Australia

### **Oxalate oxidase (5AS)**

with Renato D'Ovidio Universita' degli Studi della Tuscia Viterbo, ITALY



>LTC-MTPs anchoring by hybridization on Agilent array

Integration between two anchoring data (from FPC and LTC assembly)

Radiation Hybrid mapping with markers developed from BES

>In silico anchoring with 90K Illumina array data

> End-merging of contigs: manual assembly with anchoring information

# All people involved

**Coordinators (***CRA-Genomics Research Centre, Italy***)** Luigi Cattivelli, Antonio Michele Stanca, Giampiero Valè

#### Flow sorting and BAC library preparation

Institute Experimental Botany, Olomouc, Czech Republic Jaroslav Dolezel Hana Simkova Miroslav Valarik

**Library Replication** Delfina Barabaschi, *CRA-GPG* Alice Martini, *CRA-GPG* 

#### **Fingerprinting and BES**

*IGA Udine, Italy* Federica Cattonaro Federica Magni Simone Scalabrin

#### **Genetic Mapping**

Katia Lacrima, *CRA-GPG* Vania Michelotti, *CRA-GPG* Francesca Desiderio, *CRA-GPG* Enrico Francia, *UniMore, Reggio Emilia, Italy* Agostino Fricano, *PTP, Lodi Italy* Annamaria Mastrangelo, *CRA-CER, Foggia, Italy* 

#### Radiation Hybrid panel

Andrea Volante, *CRA-GPG* Ajay Kumar, *NDSU*, *USA* 

#### **Citogentic Mapping** *UniBari, Italy* Agata Gadaleta Antonio Blanco

#### **Anchoring Genetic to Physical**

Delfina Barabaschi, *CRA-GPG* Andrea Volante, *CRA-GPG* Lucia Prazzoli, *CRA-GPG* Giulio Fulgoni, *CRA-GPG* Paola Tononi, UniVerona, Italy Massimo Delledonne, UniVerona, Italy

#### **Survey Sequencing**

*CRIBI Padova* Giorgio Valle Nicola Vitulo

#### **Bioinformatic Support**

*CRA-GPG* Primetta Faccioli Paolo Bagnaresi Moreno Colaiacovo