Physical Mapping and Shotgun Sequencing of Wheat Chromosome 2A

Kuldeep Singh, Punjab Agril. Univ. Ludhiana India

IWGSC, Sept 7 2013 Yokohama Japan

Team India

- Punjab Agricultural University, Ludhiana (Kuldeep Singh)
- National Research Centre for Plant Biotechnology (NRCPB), New Delhi (NK Singh)
- University of Delhi, South Campus (UDSC), New Delhi (JP Khurana)

Team India

PAU Team

Principal Investigator: Dr. Kuldeep Singh,

Co-investigators: Dr. P Chhuneja, Dr. Yogesh Vikal, Dr. N.S. Bains, Dr. O.P. Gupta, Dr. Priti Sharma Dr. Neelam Singh Inderjit Singh Yadav

Research Fellows Bharat Yadav Palvi Malik Abhishek Bhatnagar

Ph.D. Students Suruchi Jindal Parampreet Kaur **NRCPB** Team

Principal Investigator: Dr. N.K. Singh Co-investigators: Dr. T. R. Sharma Dr. A. Mithra Dr. Kishore Gaikwad Research Fellows/Ph D students: Ajay Mohato Vivek Dogra

UDSC Team Principal Investigator: Dr. J P Khurana Co-investigators: Dr. P Khurana Dr. Saloni Mathur Research Fellows/Ph D students: Navin Sharma C Chowdhary

IWGSC Time Lines

- Complete Fingerprinting and Generation of the Physical map to meet IWGSC standards - 2013
- Anchoring Physical Map to the Genetic map 2014
- 3. Enter the 2nd phase
- 4. Sequencing of the MTP BACs 2015/16

OBJECTIVES

- To generate chromosome 2AL- and 2AS-specific BAC library with 15X coverage (in collaboration with J. Dolezel, IEB, Czech Republic)
- Fingerprinting of 2AL specific BACs using SNaPShot Technology
- End-sequencing of Chr 2A specific BAC clones using Sanger's method
- Senerating high density linkage map for chromosome 2A using SSR, EST, ISBP and other types of markers
- Anchoring contigs to genetic maps using SSRs, ESTs and other markers (generated by network partners) for generating a 2A physical map

OBJECTIVES

- Whole genome shotgun sequencing of flow-sorted chromosome 2AS and 2AL using NextGen Sequencing Technologies
- Senerating genome assembly and annotation in collaboration with other network partners
- Integrated draft sequence, identification of markers and discovery of genes
- Human-resource development and institutional capacity building in genomics

Progress made against the Approved Objectives, Targets & Timelines during the Reporting Period

Shotgun sequencing and Assembly

HICF of BACs and generation of MTP

BAC-end Sequencing

Marker Development and Mapping

2AS NGS DATA

>300 X Illumina Data

- 2 paired end runs from GAII
- 4 paired end run from HiSeq 2000

5.5 X Roche 454 Data

 5.5X single end run from 454 Flx sequencer

2AL NGS DATA

96X Illumina Data

- 5 paired end runs from GAII
- 1 paired end run from HiSeq 2000

7.0 X Roche 454 Data

- 5.5X single end run from 454 Flx sequencer
- 1.5X single end run from 454 Flx sequencer

2A ASSEMBLY STRATEGY

2A NGS DATA ASSEMBLY STATISTICS

Statistics	2/	AS	2AL		
	Illumina	Roche 454	Illumina	Roche 454	
Total Number of Raw Reads	1,116,247,283 (113,113,316,98	7,296,111 (1,992,327,716	448,978,394 (48,448,861,006	11,412,646 (3,505,104,650	
	1 bp)	bp)	bp)	bp)	
Total Number of Trimmed Reads	1,066,201,401 (102,759,183,42 2 bp- 90.8 %)	4,568,809 (1,168,530,853 bp - 58.7 %)	447,847,122 (45,359,789,456 bp- 93.6 %)	10,722,504 (3,130,752,253 bp - 89.3 %)	
Reads included in assembly	1,029,024,103	4,568,420	428,747,015	10,706,898	
Unmapped Reads	37,177,298	389	19,100,107	15,606	
Total Number of Contigs and scaffolds	573,520	106,241	444,331	45,163	
Total Number of bases (Contigs + Scaffolds)	334,820,432 bp	105,751,694 bp	278,199,919 bp	68,048,619 bp	
Average Contig length	602 bp	602 bp 995 bp		1,506 bp	
Maximum Contig Length	41,627 bp	18,719 bp	73,233 bp	8,091 bp	
N50	806	1029	851	1469	

Contig Assembly Programme (CAP3) STATISTICS

Statistics from CAP3	2AS	2AL
Total number of Contigs and Scaffolds (Illumina, 454)+ Singletons (Illumina, 454)	679,761 + 37,177,687 = 37,857,448	489,494 + 19,115,713 = 19,605,207
Total No of Super-contigs Generated in assembly	13,013	3,314
Total No of CAP3 Singletons Unassembled cap3 454/Illumins contigs Unassembled 454/Illumina trimmed reads	17,215,201 656,931 16,558,270	11,235,698 422,507 10,813,191
Draft 2A (CAP3 contigs+ Unassembled CAP3 454/Illumina contigs)	(438,567,520 bp)	425,821 (323,508,104 bp)
Average Contig Size	670 bp	759 bp
Largest Contig Size	41,627 bp	73,233 bp
N 50	900 bp	1,078 bp

Next Step – Short Oligonucleotide Analysis Package (SOAP) denovo

GENE PREDICTION AND ANNOTATION OF 2A

S. No	Category	No. of Sequences
1	TE Related	10,190
2	Defense Response	57
3	Physiological	5683
4	Transportation	1264
5	Stress Response	123
6	Disease Resistance	730
7	Unknown-Unnamed	436
8	Hypothetical	6947
9	DNA Synthesis	477
10	Protein Synthesis	994
11	Others	1,179
	Total	28,080

GENE PREDICTION AND ANNOTATION OF 2A

Comparison with other wheat chromosomes

Chromosome	Platform	Size of Genome	No of Contigs / scaffolds	N50	% Coverage
2AL	454 Roche + illumina	508 Mb	425,821	1078	64.2
5A	454 Roche	857.8 Mb	1,999,592	795	71.0
7DS	Illumina - GAIIx	381 Mb	571,038	1159	40.0

IDENTIFICATION OF REPETITIVE ELEMENTS

APPROACH-1 Homology Based Repeat Masking - Repeat Masker

- TREP Triticeae Repeat Element Data base (1717 RE's)
- RepBase (Grass: 2422 RE's, Oryza: 578 RE's)

APPROACH-2 De novo Repeat Masking - RepeatModeler

Homology Based Approach Results – 2A

	Class I (Retro Tra	nsposons)	2AS				2AL			
			TREP	Grass-rep	Oryza-rep	ALL	TREP	Grass-rep	Oryza-rep	ALL
LTR										
	Copia	RCL	64361	5608	248	70217	54595	4417	312	59324
	Gypsy	RGL	264235	17065	346	281646	196577	11916	227	208720
LINE										
	RTE	RIT		12		12		10		10
	L1	RIL		10708	1102	11810		7337	782	8119
SINE					128	128			76	76
	tRNA	RST		619	163	782		412	101	513
Class	II (DNA Transpos	on) Subclass -1								
TIR										
	Tc1 / Mariner	DTT	19904	88	135	20127	14389	70	86	14545
	hAT	DTA	1109	1738	149	2996	700	1370	114	2184
	Mutator	DTM	8397			8397	5636			5636
	PIF - Harbinger	DTH	6986	775	273	8034	5464	642	192	6298
	CACTA	DTC	75940			75940	52207			52207
Class	II (DNA Transpos	on) Subclass -2								
Hilitron										
	Hilitorn	DHH	1237	885	89	2211	734	684	82	1500

TOTAL Including Unclassified

582955

427402

HICF STRATEGY

STEP 1: Maintenance Of BAC Clones

Primary Culture

2 YT Medium + Glycerol (7.5%) + Chloramphenicol (12.5 μg/mL) + 2-3ul inoculum ncubation conditions: 37⁰C 160

Incubation conditions: 37°C, 160 rpm, 16 hours

STEP 2: Multiplication of BAC Clones and BAC DNA Isolation

Secondary Culture

2 YT Medium + Chloramphenicol (12.5 μg/mL) + 2-3μl inoculum

Incubation conditions: 37⁰ C, 160 rpm, 16 hours

STEP 3: Restriction Digestion and Labelling

Reagent	1X (μl)	220X (µl)
Buffer	1	220
Water	0.46	102
RNase (10 mg/ml)	0.05	11
100X BSA	0.05	11
EcoRI (1U)	0.01	2.2
BamHI(1U)	0.01	2.2
Xhol(1U)	0.01	2.2
Xbal(1U)	0.01	2.2
Haelll(1U)	0.1	22
SNaPshot	0.2	44
Beta-Merc (0.01%)	0.1	22
DNA (100 ng)	8	
Total	10	

STEP 4: Addition of Size Standard

Reagent	1X (μl)	220X (µl)				
Hidi-Formamide	9.7	2134				
Liz-1200 0.3		66				
Denaturation at 95 ^o C for 3 minutes followed by Snapchill						

STEP 5: Purification

Reagent	1X (μl)	220X (μl)				
BDX	4	880				
SAM	16	3520				
Vortex at 1800 rpm for 30 minutes						

STEP 6: Addition of Plates to ABI 3730xL DNA Analyzer

Run Module Settings

Name	Value	Range
Oven_Temperature	63	1870 DegC
PreRun_Voltage	15.0	015 KV
PreRun_Time	180	11800 sec
Injection_Voltage	1.6	015 KV
Injection_Time	30	190 sec
First_ReadOut_Time	200	10016000 ms
Second_ReadOut_Time	200	10016000 ms
Run_Voltage	10.0	015 KV
Voltage_Number_Of_Steps	10	0100 Steps
Voltage_Step_Interval	20	0180 secs
Voltage_Tolerance	0.6	06.0 KV
Current_Stability	30.0	02000 uA
Ramp_Delay	1	11800 sec
Data_Delay	500	11800 sec
Run_Time	4500	30014000 sec

STEP 7: Array View (Earlier Arrays)

Figure 2. Project flow chart. Activities within (1) the red outline would be included in the WI-IWGSC project, (2) the green outline relates to the parallel IWGSC-TGAC integration of whole genome gene space survey sequences with the IWGSC CSS and gene models, and (3) the brown outline relates to collaborations with survey sequences of the Dgenome and A-genome progenitors of bread wheat as well as Durum.

Plate ID | 19502 Scan | 5004 Capillary | 82

GA Instruments > ga3736 > Run History > Array Vesser

Plate ID 1 1312 Scan 1 432 Capillary 1 5

GA Instruments > ga3/3	0 > Pun Hist	ory > Array	Vever							
Select a nati to view. 🕎	n 37863.64	2013-062	0_1511_00	- 1						
					Vin P					

Place ID 1 1124 Scan : 5634 Capillary : 81

GA Entruments > ga3730 > Run History > Array Vewer Select a run to view Mars 1210 14-04 004

Plate ID I 1194 Scan I 4392 Capillary I 0

STEP 8: Gene Mapper Analysis

54,618 Clones of 2AL have been fingerprinted Success rate : 60-70%

CONTIG ASSEMBLY USING FPC V9.4

STEP 1: FPB Removal

First Value:	3	Last Value:	7
Low index:	60	Min bands:	40
Min sizes (per color):	5	Max sizes (total):	400
Blue background:	10	Green background:	10
Yellow background:	10	Red background:	10
Blue offset:	0	Green offset:	15000
Yellow offset:	30000	Red offset:	45000
Tolerance:	0.4	Multiply factor:	30
Peak width:	15	Fixed threshold:	500
Size from:	20	Size to:	800
Library from:	1	Library to:	12
Plate from:	13	Plate to:	16
Grid from:	17	Table suffix:	txt

STEP 2: Size Editing Using GenoProfiler

GenoProfiler 2.1	000
File Setting Analysis View Tools Window Help	
Sample File/Clone Naming Setting	• •
Specify Naming Policy of Sample File Name and Cl A sample file name at least includes information of code if there are multiple libraries associated wit positions of library code, plate number and well p necessary for many operations in this software. A a library code (optional), a plate number, and a w Example of sample file name: RI_Plate007_G12_03.1 is "RI" from 1 to 2, the plate number is "007" from 9	one Name of plate number and well position, as well as library h clones. User needs to specify the exact osition in a sample file name, which are a clone name usually includes cell position, such as RI003F12. fsa. In this file name, the library code 9 to 11, and the well position is "G12" from 13 to 15.
Library Code 🔽	
Library Code From 1	То 8
Plate Number From 9	To 12
Well Position From 13	To 15
	Help Default Save Cancel Ok
STEP 3: Contamination Check

GenoProfiler 2.1	
File Setting Analysis View Tools Window Help	
Contamination Check	et 🗹 🖂 📤
Checking Result Summary	
Choose Contamination Source 384 Well Plate Check 96 Well Plate Check Chloroplast DNA Check High Profile Sharing Check Check only Check and remove contaminated clones FPC Size File Directory y/step-5-renamed with-genoprofiler Browse New FPC Size File Directory -after-Contamination-check-with-gp Browse	Processing Message Plate TACSP2AL1013 has 7 potentially cross-contaminated clones within 4 96-well p Library + plate number: TACSP2AL1014 Plate TACSP2AL1014 has 2 potentially cross-contaminated clones in the 384-well pl Plate TACSP2AL1014 has 2 potentially cross-contaminated clones within 4 96-well p Library + plate number: TACSP2AL1023 Plate TACSP2AL1023 has 6 potentially cross-contaminated clones in the 384-well pl Plate TACSP2AL1023 has 6 potentially cross-contaminated clones within 4 96-well p A total of 48 suspiciously contaminated clones were eliminated. The remaining FPC sizes for clones are saved in /home/bharat/Desktop/FPC-2nd-May/step-6-Clean-Clones-after-Contamination-check-
Chloroplast Fragment Size File Browse	PLEASE SAVE YOUR CHECKING RESULTS BY CLICKING ON 'SAVE' BUTTON!
EDC Size Clope Name Filter Pattern *	
	100%
Tolerance For Band Matching 0.4	
Help	Start Cancel Close

STEP 4: GenoProfiler Output

11,012 clones out of 21,120 passed the criteria of FPB and GenoProfiler

FPC Step 1 - Partial view

		FPC Main Ar	nalysis					00	3			FPC V9.4	4 Main Me	nu		000	
1	CO	Tolerance:	12 C	utoff:	1e-2	2 <mark> </mark> Bur	y″: (0.10				Project:	2AL-fi	DC WRITH	LOCK	ED	
	1	Precompute	e 🖲U	se CpM	СрМ	Table						flace+	Contina				
		Create 1796 (contig	s								01033.	[COUCIES] [CIONE	<u>s</u>] [ne	inkens]	
		●Log ●Stde	ou Pr	oiect 2/	AL-fp	c Pag	e 1.0 (of 60.5	5		•	Soonoh+	Nomo I		6	908	
DU	an		EDI	201 - 6			11770	Sea	0 Max	kana 0	3		Resul	ts H	eln		
	t	CB: Best com	nt 9.4	1 Date	: 11:	17 Tu	e 27	Aug 2	013	User: b	harat		Chr_R	emark	0101		
	File	Build Conti	Cor	ntigs w	ith r	result:	s 179	6 To	leran	ice 12 c	utoff	1e-22	Searc	h Summa	ry		
		Kill Cont	is M Cor	ntig Cl	one M	larker	Seq	Draf	t Qs	Scor	e A	vg Low					2
	w	KIII CONS		2	911 8	-	-	-	0	0.259	0.143	0.001					0
		Incremental	. 1	3	16	-	-	-	2	0.764	0.701	0.578					UL
C	W	Last Build :	27	5	8	_	2	2	0	0.853	0.838	0.821					
1		Contraction of the second second		6	6	-	-	-	0	0,900	0.896	0,886					0 L
C	W	DQer if >=	10	8	12	2			1	0.958	0.943	0.933					
C				9	9	-	-	-	1	0.851	0.825	0.766					0
5		ReBuild 1+	¢	11	6	- 2	-	-	0	0.880	0.860	0.841					Ŭ L
	w			12	26	-	-	-	8	0.580	0.460	0.315					0
		()Auto Merge	e/	13	9	-	-	-	1	0.798	0.803	0.767					θL
C	W	Ends>Ends		15	6	-	-	-	0	0.911	0,906	0.902					
		KeuSet>En	-	16	8	_	-	-	1	0.814	0.812	0.783					0 L
C	w_	Reguet 71p		18	8	17	57	-	1	0.734	0.691	0.650					
		Clone:		19 20	7	_	_	_	0	0.870	0.794	0.726					0
		orenet		21	4	<u>_</u>	_	-	Ó	0.989	0.982	0.973					
C	W		f,	22	25	_	_	-	12	0.438	0.318	0,126					
		[CIUSE] HIT		24	18	_	-	-	4	0.711	0.546	0,185					0 L
C	W	1.000		25	12	-	-	-	2	0.780	0.619	0,261					
X				27	14	-	-	-	2	0.719	0.606	0.379					
C	om	nlete Bui	1	28	1/	-	2	_	4	0.693	0.520	0,444 0,481					
	'nM			30	4	-	-	-	ō	0.994	0,988	0,983					
	.hu				±, `		TC.	207		011 /	10, 10	21/2201	1 - 10	0- 224	. 1	00- 4	
2	υTU	gles 3069	Avg	overt	ap :	5.2	Avg	Scor	e u	.911 (US 10	51(238)	(<=10	QS 234	>1	OUS 4	
C	.re	ate 1796	cont.	1gs (1:1	/96):	Ma	x 91	1,	1 (>50	9), 2	(50:26), 814	(25:4), 9	/9 (3	(:2)
GN	XN	Pairs:	Real	time	0h	3m 2	24s	l	lser	time	0h 3	m 23s	Sys	time 0	h Om	0s	
L	.av	out:	Real	time	0h	1m 2	2S	U	lser	time	0h 1	.m 1s	Sys	time 0	h Om	0s	
	-																0
	1																

FPC Step 2 - Partial view

FPC Ctg1 2AL-fpc						98
File Edit Analysis Highlight Add	track Layout Size op	otions				Help
Zoom 5.0 Whole Ctg1 of 2AL-fpc	Show buried clones O Yes No	Search	CB Unit Ra	inge C	ontig stats Clones: 911 (192 buried Markers: 0 Sequenced: 0	d)
					Length: 1140 CB units	5
	TaaCco2A	1 122 122		TaaCco2Al	180K24	07
	TaaCsp2A	122522 122F22	TaaCso2	241 042E03	100824	
	TaaCsp2AL 019N0	2	TaaCsi	D2AI 121E20		
	T	aCsp2AL005N02	10005	TaaC	sp2AL042C13	
		TaaCsp2AL180P04*			TaaCsp2AL033H19	
	Taa	Csp2AL130N04		Taa	Csp2AL005J08	
	Taa	Csp2AL130A08*		2	TaaCsp2AL178H05	
Т	aaCsp2AL157L16		TaaCsp2AL051N21	28	Та	aCsp2AL12
	TaaCsp2	AL122K20		TaaCsp2	AL001M15*	
1	TaaCsp2AL178J20		TaaCsp2AL111H0	04		Таа
	TaaC	p2AL127J07		Taa	Csp2AL120H22	TaaCs
	TaaCsp2AL	122120	Ta	aCsp2AL016C	24	TaaC
TaaC	sp2AL120N21		TaaCsp2AL042G10			TaaC
	TaaCsp2AL008L16		Таа	aCsp2AL129H	16	
	TaaCsp2AL044H12		TaaCsp2AL102C05	TaaCsp2AL050F18	_	
	TaaCsp2AL019J22	N12	TaaCsp	TaaC		
TaaC	sp2AL041A08		TaaCsp2AL130J02			TaaCs
	TaaCsp2AL017B07		Taa	Csp2AL180H1	2	
	TaaC	sp2AL103I10	101	1	TaaCsp2AL030M08	
TaaCsp2AL109I20		TaaCsp2AL003M18		Ta	aCsp2AL036E22	
TaaCsp	2AL122G18		TaaCsp2A	L017E18		TaaC
TaaCsp2AL127I22	23	aaCsp2AL003I18	TaaC	Csp2AL155M1	5	Tč
TaaCsp2AL180K15	T	TaaCsp2AL064C01	TaaCsp	2AL156D11		TaaCs
TaaCsp2AL128M07	laa	CSP2AL003A12	TaaCs	pZAL051D21		Taacs
TaaCsp2AL064G13						Taac
TaaCsp2AL 102119	Id Taa		Taa	TaacspZALTU		Taar
	TaaCsp2AL122I18	CSPZALOTIMZO	Idd	TaaCsp2	AL065P16*	
<u>।</u>	N					
175	125	175	200	250		325

FPC Step 3 - Partial view

I.	N And	-	Diama	C					(IV-		- 20	An				line	-	-	7 44-27 4		Libraria	da	
l	Appu	ications I	Places	syste	m 🤘	2	1	<u>-</u>				Ad			U	4 1))	× 11	Je Aug 2	7, 11:37 A	м 🔉	Dharat	U	11 🥑 🕑 🔰
l	Projec	t 2AL-fpc	Page	1.0 ol	f 35.0	D																	008
1	EPC 201	-fpc fla	opes 11	372	Sea	о м	arke	ce û			Resul	t.s	Help										
	9.4 Da	ate: 11:3	36 Tue	27 A	ug 2	013	Use	er: bhara	it		Chr. R	emark											
	Contigs	s with re	esults	340	Tol	era	nce :	12 cutoff	1e-22		Searc	h Sur	maru										
		01000 H					~ 2	D C C C C C C C C C C C C C C C C C C C	~														
		CIONE Ma	агкег э		urar -	~ I	us O	DDer Spl	it ctg17	97-ctg	1830 1	e-25 M	ap>1 Qs	0.									
	3	16	2	2			ž	DQer NoS	plit 1e-	31 Map	1 Qs2.	DQer	NoSplit	1e-28	Map1	Qs4.	DQer	NoSplit	: 1e-25 M	1ap1 Q	s4.		
1	T 4	9	-	-	-	<u>~</u> 1	0	DQer NoS	plit 1e-	25 Map	>1 Qs0	•	10 12 2000		22 (2)		1979	60 10 0000	5 400 1000 1 5 40 1212 2				
	9	9	5	5	5	-	1	DQer NoS	plit 1e-	31 Map	1 Qs1.	DQer	NoSplit	1e-28	Map1	Qs1.	DQer	NoSplit	: 1e-25 M	1ap1 Q	s1.		
	12	6	-	-	-	N	1	DUer Not	it ctal8	31 Map 44 1e-	1 USI. 28 Man	Duer	NOSP11t	NoSplit	Map1	USI. 5 Mar	Duer 1 Oct	NOSP110	: 1e-25 P	napi W	S1.		
	13	7	-	=	-	- ⁻	ĭ	DQer NoS	plit 1e-	31 Map	1 Qs1.	DQer	NoSplit	1e-28	Map1	Os1.	DQer	NoSplit	: 1e-25 M	1ap1 Q	s1.		
	14	8	-	-	-		0	DQer NoS	plit 1e-	28 Map	1 Qs0.	DQer	NoSplit	1e-25	Map1	Qs1.	00.0000000						
	16	7	55	55	5	1	0	DQer NoS	plit 1e-	25 Map	1 Qs0.												
	11/	ь с	-	_			1	Duer Nos	plit 1e-	31 Map 71 Map	1 Usl.	Duer	NoSplit	1e-28	Map1	Us1.	Duer	NoSplit	: 1e-25 M	1ap1 U	s1.		
	22	4	_	-		~	6	DOer Sol	it ctol8	31 Map 31 1e-	1 482. 25 Man	>1 Den	NOSPITC	16-20	habt	W82+	Dger	nospire	5 IE-25 P	Jahr M	82.		
	24	9	2	2	2		ž	DQer NoS	plit 1e-	31 Map	1 Qs3.	DQer	Split c	tg1845	1e-28	B Map)	>1 Qs2	. DQer	NoSplit	1e-25	Map1 Qs	6.	
	25	12	-	-	-		1	DQer NoS	plit 1e-	28 Map	1 Qs1.	DQer	NoSplit	1e-25	Map1	Qs2.	1211 03-04	10 0.72.00	0.000		100000000000000000000000000000000000000		
	26	.7	5	55	5		0	DQer NoS	plit 1e-	25 Map	1 Qs0.		11		11								
	27	12	-	-	-		9	DQer No5	plit 1e-	28 Map	1 Qs0.	DQer	NoSplit	1e-25	Map1	Qs2.	0-4			- 05			
	20	14	2	2	2		0	Duer Spi	it ctgið blit 1e-	83 IE- 31 Man	з⊥ тар. 1 П₀2	DOer	NoSplit	105p11t	Map1	Map.	DOer	NoSplit	105011t J	le-20 1ap1 0	марі цяч 20	•	
	32	14	-	-	-	-	3	DQer NoS	plit 1e-	31 Map	1 QsZ.	DQer	NoSplit	1e-28	Map1	Qs3.	DQer	NoSplit	: 1e-25 M	lapi Q	s3.		
	38	2	-			~ 1	ō	DQer Spl	it ctg18	32-ctg	1833 1	e-25 M	ap>1 Qs	0.			0.001						
	39	5	2	2	2		0	DQer NoS	plit Īe-	28 Map	1 Qs0.	DQer	NoSplit	1e-25	Map1	Qs1.							
	42	5	-	-	-	~ !	0	DQer Spl	it ctg18	46-ctg	1847 1	e-28 M	lap>1 Qs	:0, DQei	r NoSp	lit :	le-25	Map>1 G	ls3.				
	44	4	2	2			0	Duer Nos	plit 1e-	25 Map	1 USU.	D0	N=C=1++	1 - 95	Maria 1	0-1							
	52	5		-	-		1	DOer Nos	plit le-	zo map 31 Map	1 0e1	Düer	NoSplit	1e-29	Map1	QS1. Qs1	DØer	NoSplit	- 1e-25 h	lan1 0	e1		
	60	4		22	2	N	ō	DQer Spl	it ctg18	84 1e-	31 Map	>1 Qs0	. DQer	NoSplit	t 1e-2	28 Mar	o1 0s3	. DQer	NoSplit	1e-25	Map1 Qs	3.	
	64	6	-	-	-	-	1	DQer NoS	plit 1e-	31 Map	1 Qs1.	DQer	NoSplit	1e-28	Map1	Qs1.	DQer	NoSplit	: 1e-25 M	1ap1 Q	s1.		
	73	14	5	5	55		3	DQer NoS	plit 1e-	31 Map	1 Qs3.	DQer	Split c	tg1848	1e-28	3 Map:	L Qs3.	DQer N	NoSplit 1	le-25	Map1 Qs6	· ·	
	75	4	-	-	-	~ 1	9	DQer Spl	it ctg18	49 1e- 71 Mar	28 Map.	>1 Qs0	DQer	Split (ctg183	54 1e	-25 Ma	ap>1 Qs2	2. . 1. 0E	M = = 1	0-0		
	84	8	-	-	-	28	2 1	DUer Nos	plit le-	31 Map 31 M∍p	/I USZ 1 D⊳1	, Duer	NoSplit	t 1e-20	8 Mapi Mapi	. ųs∠. Ω≂1	, Duer	NoSplit	LT 18-25 - 18-25 M	Mapi 1ap1 D	ųs∠. ≂1		
	89	7	2	2	2	-	1	DQer NoS	plit le-	31 Map	1 Qs1.	DQer	NoSplit	1e-28	Map1	Qs1.	DQer	NoSplit	: 1e-25 M	lapi Q	s1.		
	93	5	=	5	=		1	DQer NoS	plit 1e-	31 Map	1 Qs1.	DQer	NoSplit	1e-28	Map1	Qs1.	DQer	NoSplit	1e-25 N	1ap1 Q	s1.		
	97	23	<u>22</u>	<u>22</u> 5	22	~ ;	2	DQer NoS	plit 1e-	25 Map	>1 Qs2	•	53		53			53		513			
	99	.9	-	-	-	~ j	0	DQer NoS	plit 1e-	28 Map	>1_Qs0	. DQer	NoSpli	t 1e-2	5 Map1	. Qs3.			4 05 1		-		
	104	10	0	5	5		2	Duer Nos	plit le-	31 Map 71 Map	1 USZ.	DQer	NoSplit NoSplit	10-28	Map1	Us2.	DUer	NoSplit NoSplit	: 1e-25 M	1ap1 U 1-p1 0	sj.		
	108	4	_	-	_	1	0	DOer Nos	plit le-	25 Map	1 0s0.	DGEL	NOSPITC	16-20	парт	WSC+	Dael	HOSPITE	J 18-20 P	Iabr ø	32.		
	116	Ż	-	-	-	~	õ	DQer NoS	plit 1e-	31 Map	>1 Qs0	. DQer	NoSpli	t 1e-28	8 Map1	Qs1.	. DQer	NoSpli	t 1e-25	Map1	Qs1.		
	118	9	-	-	-	~ 1	0	DQer NoS	plit 1e-	25 Map	>1 Qs0	• 222	S 72 673										
	119	6	5	50	5	~ !	0	DQer NoS	plit 1e-	28 Map	>1_Qs0	. DQer	NoSpli	t 1e-2	5 Map1	Qs1.							
	125	6	-		-	1	1	Duer Nos	plit 1e-	31 Map 71 Map	1 Usl.	DUer	NoSplit	1e-28	Map1	Us1.	DUer	NoSplit	: 1e-25 M	1ap1 U	s1.		
	120	5	-	2			1	DOer Nos	plit le-	31 Map	1 0s1.	DQer	NoSplit	1e-20	Map1	QS1. Qs1	DQer	NoSplit	- 1e-25 M	lapi Q lapi Q	si. s1		
	129	10	2	2	2		2	DQer Spl	it ctg18	85 1e-	31 Map:	1 Qs2.	DQer N	oSplit	1e-28	3 Map:	L Qs2.	DQer N	NoSplit 1	le-25	Map1 Qs2	2.	
	133	8	-	-	-		1	DQer NoS	plit 1e-	31 Map	1 Qs1.	DQer	NoSplit	1e-28	Map1	Qs1.	DQer	NoSplit	: 1e-25 M	1ap1 Q	s1.		
	136	5	3	5			1	DQer NoS	plit 1e-	31 Map	1 Qs1.	DQer	NoSplit	1e-28	Map1	Qs1.	DQer	NoSplit	: 1e-25 M	1ap1 Q	s1.		
	138	57	_	-	_	1	1	Duer NoS	plit 1e-	25 Map 71 Mar	1 Us0.	DOar	NaCal + +	120	Mand	0-1	DOor	NoCol++	- 1 9E -	11 0	-1		
	144	4 9	2	2	2	~	1	DOer Nos	plit le-	or Map 25 Mar	1 USI.	Dyer	nospiit	1e-28	map1	WSI.	Duer	nospiit	5 16-20 M	napı Q	81.		
	146	4	-	-	-	-	ĭ	DQer NoS	plit 1e-	31 Map	1 Qs1.	DQer	NoSplit	1e-28	Map1	Qs1.	DQer	NoSplit	: 1e-25 M	1ap1 ມ	s1.		
	148	11		5		-	1	DQer NoS	plit 1e-	28 Map	1 Qs1.	DQer	NoSplit	1e-25	Map1	Qs2.	0.02235		6 565 565 k				
	154	5	-	2	-	- 1	0	DQer NoS	plit 1e-	31 Map	1 Qs0.	DQer	NoSplit	1e-28	Map1	Qs1.	DQer	NoSplit	: 1e-25 M	1ap1 Q	s1.		
	155	7	-	-	7		0	DQer NoS	plit 1e-	28 Map	1 Qs0.	DQer	NoSplit	1e-25	Map1	ųs1.							
	159	ະ 2	2	2	2	~	0	Duer Nos	plit le-	∠o Map 31 Map	⊥ USU. >1 D≂O	DQer	NoSpli	+ 1e-29	8 Mart	0.51	DQer	NoSpli	t 1e-25	Man1	Q≂1		
							~			er inde	wov	+ DWD1		~ + ~ ~ ~ ~	- II. MPT					 Contract 	****		

FPC Step 4 - Partial view

🚯 Applications Places System 🥹 📝 📧 🧔 📴	🗐 🔄 🔆 🔤		⊍ 🔹)) 🖂	Tue Aug 27, 11:48 AM 😣 bharat 😃 🕴	🔊 💽 👣
FPC Ctg1902 2AL-fpc					
File Edit Analysis Highlight Add track Layout Size option	IS				Help
Zoom 5.0 Whole Yes O No Ctg1902 of 2AL-fpc	Search		nit Range to 267	Contig stats Clones: 219 (104 buried) Markers: 0 Sequenced: 0 Length: 268 CB units	
TaaCsp2AL101P15					E
TaaCsp2AL101K08					
TaaCsp2AL101E22					
TaaCsp2AL128G09					
TaaCsp2AL104K08*					
TaaCsp2AL104G02					
TaaCsp2AL1030	C17				
TaaCsp2AL102G10*					
TaaCsp2AL061	009*				
TaaCsp2AL104H06					
TaaCsp2AL103I18					
TaaCsp2AL103H03*					
TaaCsp2AL036J02					
TaaCsp2AL033B15	-10				
TaaCsp2AL013K08					
TaaCsp2AL127G02					
TaaCsp2AL104A20*		_			
TaaCsp2AL103M06					
TaaCsp2AL104K18					
TaaCsp2AL104L18					
TaaCsp2AL101/	A11*				
TaaCsp2AL128J11					
TaaCsp2AL064E09					
TaaCsp2AL063E18	8				1
TaaCsp2AL033B17					
TaaCsp2AL064G19			6	TaaCsp2AL120B12	-
TaaCsp2AL064O07~			3 	TaaCsp2AL128G03	-
TaaCsp2AL063N14*	_	24	Ta	aaCsp2AL066B11	
TaaCsp2AL064O11*			TaaCsp2AL10	01A17	
GC	5H15				100
		4	25	150 175	1200

FPC Step 5 - Partial view

5.0 Whole	Show buried clones	Search	CB Unit Range	Contig stats Clones: 59 (12 buri	ed)
				Markers: 0	
881 of 2AL-fpc				Sequenced: 0	
				Sequenced. o	
				Length: 455 CB un	lits
			TaaCsp2	2AL050C12~	
			TaaCsp	2AL038A10*	
T->C->2	1002516			2AL035G22~	
TaaCsp2AL042C17	ALOUSE 10	_		14-	
TaaCsp2AL042G17			TaaCsp2AL039J	1 - Free	
TaaCsp2AL179A03	73	₽ –	TaaCsp2AL003G06		
TaaCsp2AL003B13		1	aaCsp2AL017E06		
Csp2AL102D09			TaaCsp2AL127C02~		
TaaCsp2AL152A17			TaaCsp2AL120J16		
aCsp2AL040F03			TaaCsp2AL056N13		
09~			TaaCsp2AL165E17		
aCsp2AL129F06			TaaCsp2AL041E05~		
21			TaaCsp2AL129K07*		-
208*			TaaCsp2AL001C12		-
		TaaCsp	2AL122G04		
			TaaCsp2AL059D18		3
0		TaaCs	101014		TaaCcan
			101014	TaaCco2AL 12/	
75	TaaCsp241 040F19	100CSP2ALUT/110	TaaCsp241 055108	100CSPZAL124	110
	TaaCsp2AL021N14		TaaCsp2AL180C21		
			1000552112100021	Na at	

BAC Clones showing Minimum Tiling Path (MTP)

FPC Ctg1 2AL-fpc File Edit Analysis Highlight Add track Layout	Size options			🖨 🖨 😣 Help
Zoom 5.0 Whole Ctg1 of 2AL-fpc	o Search	CB Unit Range 0 to 410	Contig stats Clones: 8 (0 buried) Markers: 0 Sequenced: 7 Length: 411 CB units	
=			TaaCsp2AL178C11	12
TaaC	TaaCsp2AL036L19 sp2AL048H17	TaaCsp2A	L037年12	
TaaCsp2AL178E14 TaaCsp2AL063E23				
MTP: TaaCsp2AL036L19 28600 MTP: expway start MTP: TaaCsp2AL178E14 73700	MTP: expway end CB-merge MTP: TaaCsp2AL037F12 12100	MTP: expv MTP: TaaCsp2Al CB-me	vay start 17 8/CTP: 68800 p2AL034H04 12100 MTP: expway end erge	MTP: Ta M
	10°)		

BAC Clones showing Minimum Tiling Path (MTP)

FPC Ctg1 2AL-fpc File Edit Analysis Highlight	Add track Layout Size options			🗢 🖻 🙁 Help
Zoom 5.0 Whole Ctg1 of 2AL-fpc	Show buried clones Yes O No	CB Unit Range 0 to 410	g stats Clones: 8 (0 buried) Markers: 0 Sequenced: 7 Length: 411 CB units	
5 <u>52AL036L19</u> 7	TaaCsp2AL037F12	TaaCsp2AL034H04	TaaCsp2AL066J11	-
: expway end CB-merge \$p2AL037F12 12100	MTP: expway start MTP: TaaCsp2AL17 BCTP: 88a09 p2AL034H04 12100 MTP: expway end CB-merge	MTP: TaaCsp2AL066J11 34100 CB-merge MTP: expway start	MTP: expway end	
	(275	325	375

BAC Clones showing Minimum Tiling Path (MTP)

PC Ctg1899 2AL-8A	ug						
e Edit Analysis Hi	ighlight Add track La	ayout Size options	s				•
Zoom	Show bu	uried clones	Search		CB Unit Range	Contig stats	
1.9	ultrala (Charles	0.11-	-		0 b 770	Clones: 12	6 (2 buried)
0 (`	whole 🥑 Yes	U NO			0 0 150	a secol	
1899 of 2AL-8Aug						Mark	ters: 0
						Sequer	nced: 10
						Length: 7	51 CB units
		TaaCsp2/	AL152G18	Taa	Csp2AL122E24		
		TaaCsp2AL101	F14	Taa	Csp2AL116J07		
		TaaCsp2AL122	H19	Та	aCsp2AL127L13	4.5	
		TaaCsp2AL15	52118	TaaC	sp2AL127D17		
		TaaCsp2A	L109C19	Taut	sp2AL 122E18		
		TaaCsp2AL1	27L07	TaaC	sp2AL127H21		
		TaaCsp2AL1270	011	TaaC	sp2AL127N07		
	3	TaaCsp2AL006A1	1	TaaCs	p2AL122J22		
		TaaCsp2AL017	M22	TaaCs	sp2AL122120		
	_	TaaCsp2AL176H09	120	Taa	Csp2AL048H19		
		TaaCspZAL127	H01	Taac	Sp2AL127J23		
		TaaCSpZAL178H05		TaaC	SP2AL127D09		
	TaaC	CD201127819		TaaCco	DAL 179115		
	TaaCco 2ALC	M2C13 TaaCco2	AL 041016	TaaCa	D2AL 122C19		
	TaaCsp2ALC	1061K22	ALOTIOIO	TaaCo	0241 127 107	TaaCso2	AL 059K02
	TaaCsp2AL03	7M18 TaaCs	D2AL 109119	TaaCsp2	AL 127H11	TaaCsp2AL017L1	6
	The Cop2AL 180K	TaaCsp2AL0	41C20	TaaCsp	2AL122118	TaaCsp2AL017N0	5
TaaCsp2AL037005	TaaCsp2AL152K23	TaaCsp2AL1	78117	TaaCs	D2AL103I10	TaaCsp2AL050J03~	TaaCsp2AL
TaaCsp2AL051C04	TaaCsp2AL044L17	TaaCsp2AL001	ID19	TaaCsp2AL127	P15 TeaCupZAL	127815 TaaCsp2A	L056(21
TeaCsp2AL0	TaaC	sp2AL127L11	TaaCsp2	AL127003	TaaCsp2AL155P14	TaaCsp2AL039O16*	TaaCsp2AL16
SSP2AL BOAL 72	TaaCsp2AL061E04	TaaCsp2AL109A1	7 <u>T</u> a	aCsp2AL003H12	TaaCsp2AL178J20	TeaCsp2AL037E11	TaaCsp2AL121D12
				MTP: TaaC	MTP: expw sp2AL127B15 27500	ay end	
			MTP: TaaCsp2/	AL122E18 46200			
	MTP: TaaCsp2AL 178A	1aaCSp2AL127D03 15 37400	46200			MTP: TaaCsp2Al	166N03 59400
MTP: TaaCsp2AL1	80K24 28600					MTP: expway start	
TP: expway start					MT	P: TaaCsp2AL056121 25300	

Number of contigs assembled at different cut off values using FPC V9.4

			Number of clones in
Cutoff	Contigs	Singletons	biggest contig
1.0e-75	678	9542	152
1.0e-70	833	9108	164
1.0e-65	1003	8591	176
1.0e-60	1205	7982	180
1.0e-55	1402	7350	186
1.0e-50	1578	6660	195
1.0e-45	1739	5927	195
1.0e-40	1843	5277	201
1.0e-35	1923	4642	202
1.0e-30	1923	3997	346
1.0e-25	1877	3390	692
1.0e-22	1796	3069	911

Current status of SNaPshot Sequencing data -2AS

S. No	. Details	Value
1	Total No of Plates (96 well) fingerprinted	75 x 4 (300 plates)
2	Total No. of plates analyzed from GeneMapper	91 (8554 BAC clones)
3	Total No of BAC clones passed from Genemapper	7678 (87.6 % of analyzed BAC Clones)
4	Total No of analyzed BAC Clones filtered by FPB	5219 (61 % of GeneMapper Passed BAC Clones)

BAC-End Sequencing

BAC libraries in 384-well format for *Triticum aestivum* cv. Chinese Spring chromosome 2A, received in September 2011 from the Czech Republic

Chromosome 2AL:	200 plates
Chromosome 2AS:	148 plates
Total plates:	348
Total BACs:	1,33,632
Average insert size:	120 kb
Vector:	pIndigoBAC-5
Chromosome coverage:	15X

Work flow for BAC ends Sequencing

BAC Quality Check

Progress (August, 2013)

Glycerol Stock	(96 Well Plate)
	2AL = 520, 2AS = 196
DNA Isolation	716
Sequenced Plates	716 X 2 (F/R)
No of BAC Clones Sequenced	67,304
	2AL = 48880, 2AS = 18424
Total Data Generated	74Mb
Average Sequence length	550bp

BAC End Sequence Analysis

Blast Result – **e**⁻³⁵

BAC End Sequence Analysis

BAC End Sequence Analysis Result – 2AL

S. No.	BAC clone	Name of the gene	Organism
1	TaaCsp2ALhA0126-A04	somatic embryogenesis receptor-like kinase 1	A. thaliana
2	TaaCsp2ALhA0080-M02	Flowering-promoting factor 1-like protein	A. thaliana
3	TaaCsp2ALhA0068-I22	WHEAT ATP synthase subunit beta	O. sativa
4	TaaCsp2ALhA00132-020	Homeobox-leucine zipper protein	O. sativa
5	TaaCsp2ALhA0102-F16	Probable WRKY transcription factor	A. thaliana
6	TaaCsp2ALhA0075-A08	DEAD-box ATP-dependent RNA helicase	O. sativa
7	TaaCsp2ALhA0046-I05	OsFBX150-F-Box domain containing protein	O. sativa
8	TaaCsp2ALhA0019-F04	NAD(P)H-quinone oxidoreductase subunit	T. aestivum
9	TaaCsp2ALhA0068-L03	Glutathione S-transferase	A. thaliana
10	TaaCsp2ALhA0013-C06	Fructokinase-1	O. sativa

BAC End Sequence Analysis Result – 2AL

S. No	BAC clone	Name of the gene	Organism
11	TaaCsp2ALhA0087-P20	Scarecrow-like protein 32	A. thaliana
12	TaaCsp2ALhA0001-H24	suppressor of stem-loop protein 1	O. sativa
13	TaaCsp2ALhA0005-E8	Na+ transporter	O. sativa
14	TaaCsp2ALhA0025-B5	HEAT repeat family protein	O. sativa
15	TaaCsp2ALhA0002-J15	BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1	O. sativa
16	TaaCsp2ALhA0052-G3	Phosphatidyl inositol-4-phosphate 5-kinase	O. sativa
17	TaaCsp2ALhA0077-F03	sucrose-phosphate synthase	O. sativa
18	TaaCsp2ALhA0091-K14	aquaporin protein	O. sativa
19	TaaCsp2ALhA0050-E16	Histone-lysine N-methyltransferae	A. thaliana
20	TaaCsp2ALhA0027-E9	Aromatic-L-amino-acid decarboxylase	C. roseus

BAC End Sequence Analysis Result – 2AS

S. No.	BAC clone	Name of the gene	Organism
1	TaaCsp2AShA0025-P07	photosystem I P700 chlorophyll a apoproteinA1	O. sativa
2	TaaCsp2AShA0011-C10	starch synthase	O. sativa
3	TaaCsp2AShA0033-J02	DEAD-box ATP-dependent RNA helicase	O. sativa
4	TaaCsp2AShA0036-D21	zinc finger, C3HC4 type domain containingprotein	O. sativa
5	TaaCsp2AShA0049-G21	lectin-like receptor kinase	O. sativa
6	TaaCsp2AShA0049-F01	SHOOT1 protein	O. sativa
7	TaaCsp2AShA0004-M03	patatin-like phospholipase family protein	O. sativa
8	TaaCsp2AShA0041-D03	ATPA_WHEAT ATP synthase subunit alpha	T. aestivum
9	TaaCsp2AShA0038-L17	HSP82_MAIZE Heat shock protein	Zea. mays
10	TaaCsp2AShA0033-C08	WHEAT RuBisCO large subunit-binding protein	T. aestivum

BAC End Sequence Analysis – 2AS

S. No	BAC clone	Name of the gene	Organism
11	TaaCsp2AShA0003-L19	HSF-type DNA-binding domain containing protein	O. sativa
12	TaaCsp2AShA0038-A11	OsFBX362 - F-box domain containing protein	O. sativa
13	TaaCsp2AShA0043-K16	WEB1_ARATH Protein WEAK CHLOROPLAST MOVEMENT UNDER BLUELIGHT 1	A. thaliana
14	TaaCsp2AShA0015-F04	SAUR-like auxin-responsive protein family	A. thaliana
15	TaaCsp2AShA0039-N21	apocytochrome b	A. thaliana
16	TaaCsp2AShA0031-B09	Chlorophyll a-b binding protein	O. sativa
17	TaaCsp2AShA0032-J04	glycerol-3-phosphate transporter	Z. mays
18	TaaCsp2AShA0004-M04	anthranilate phosphoribosyltransferase	O. sativa
19	TaaCsp2AShA0005-G15	SAC3/GANP family protein	O. sativa
20	TaaCsp2AShA0021-I10	Cytochrome P450 protein	O. sativa

MAPPING POPULATIONS

Cross	Generation	Population size
T. boeoticum (pau5088) X	F ₁₂	160
<i>I. monococcum</i> (pau14087)	F ₅	60
	F ₄	105
	F ₆ (KSU)	1200
T. dicoccoides (pau4632) X Aconchi-89	F ₃	1461
T. dicoccoides (pau4632) X PBW 114	F ₃	1607
T. dicoccoides (pau4668) X Aconchi-89	F ₃	405
T. dicoccoides (pau4668) X PBW 114	F ₃	849
PBW 114/ <i>Ae. Tauschii</i> (amphiploid) X PBW 621 (pau 14328)	F ₄	627
PBW 114/ <i>Ae. Tauschii</i> (amphiploid) X HD2967	F ₄	464

Field view of the RIL population derived from the cross *T. boeoticum / T. monococcum*

MARKER DEVELOPMENT AND MAPPING

SSRs were identified by using MISA

Definition of Microsatellite Marker (unit size/ minimum number of repeats) - (1/10) (2/10) (3/7) (4/6) (5/6) (6/6)

MISA Output

Total number of contigs examined:425821Total number of identified SSRs:22460Number of contigs containing SSRs:18376Number of SSRs present in compound formation:1859

SSR Marker Development

SSR prediction on 18376 sequences containing SSRs with following criteria - (1/10) (2/15) (3/10)(4/10) (5/6) (6/6)

Number of SSRs

Mononucleotides
Dinucleotides
Trinucleotides
Tetranucleotides
Pentanucleotides
Hexanucleotides

Mononucleotides – 16918 Dinucleotides – 849 Trinucleotides – 380 Tetranucleotides – 38 Pentanucleotides – 24 Hexanucleotides – 29 No. of SSRs in compound formation - 1525

Number of SSR being mapped = 500

SSR Genotyping on ABI

SSR Genotyping on ABI

Analysis of SSR Markers

Tm	Tb	CS	No. of Markers
-	-	+	32
+	+	+	43 (Monomorphic)
+	+	+	14 (Polymorphic)
-	+	+	38 (Polymorphic)
-	-	-	01
Total			128 (~40% Polymorphism)

Mapping of SSRs identified from the shotgun assembly

2AL original map

wpauS00034 - 6389547 - (CCCAG)7

wpauS00023 - 6340077 - (AAAG)7

Generation of ISBP Markers

- ISBP markers were generated using ISBPFINDER.pl
- ► Total number of ISBPs 216414
- ► Total number of ISBP markers 12706
- Number of ISBP markers used for mapping (pilot project) - 50
- ► Genotyping system used 2.5% agarose

Analysis of ISBP Markers

Tm	Tb	CS	Number of markers
	-	+	11
+	+	+	8 (Polymorphic)
-	+	+	13 (Polymorphic)
+	+	+	25 (Monomorphic)
-	-	-	1 (No Amplification)
Total Loci			58 (~33% polymorphism)

Development of Gene Based Markers

HOMOLOGY SEARCHES USING 2A SPECIFIC 5'- AND 3'-EST SEQUENCES

QUERY SEQUENCES	DATABASE	HOMOLOGOUS SEQUENCES	E VALUE
3' AND 5' ESTS	FlcDNAs	644	1e-10
FlcDNAs	Roche 454	41	1e-10
FlcDNAs	2AL- ILLUMINA	152	1e-10

Parental Polymorphism Survey

Predicted genes were used for designing of primers (Perl Primer), followed by amplification on *T. monococcum*, *T. boeoticum* and CS

Amplification Pattern				
T. monococcum	T. boeoticum	Chinese Spring	No. of Genes	
+	+	+	85	
-	-	-	8	
+	+ - +			
-	- + +			
+	+ + -		2	
_	-	+	22	
	123			
S	4			
Pr	6			

Genotyping using T. boeoticum X T. monococcum RIL population

Electropherogram of an amplicon of *T. boeoticum*, T. *monococcum* (Arrow pointing to SNP, C/T)

SNP identified using Clustal X between T. boeoticum and T. monococcum

ClustalX 2.0.11		
File Edit Alignment Trees Colors	Quality Help	
Mode: Multiple Alignment Mode 🔹 Fon	C/T detected at position 135)	

38-2B-F	ACGTAACAGATTTTTAGCATGGGGTCGGATTACTAGGGATACAGCTGAATGGGAAAGTGTGAAAGCATGTCGGAAAGTGAAACTA	
38-2M-F	ACGTAACAGATTTTTAGCATGGGGTCGGATTACTAGGGATACAGCTGAACGGGAAAGTGTGAAAGCATGTCGGAAAGTGAAACTA	
	ClustalX 2.0.12	0
	File Edit Alignment Trees Colors Quality Help	
	Mode: Multiple Alignment Mode v Font: 16 v C/A at position 60	
	· · · · · · · · · · · · · · · · · · ·	
	18M-F <mark>ATGTAGTTTCAGAGATCATGGTTATGCCATATTTATATTAAAGTTTTCAGCGTATTGGAAAGTTATGTTAT</mark> 18B-F ATGTAGTTTCAGAGATCATGGTTATGACATATTTATATTAAAGTTTTCAGCGTATTGGAAAGTTATGTTAT	

ClustalX 2.0.12		99
<u>File Edit A</u> lignment <u>T</u> re	ees <u>C</u> olors <u>Q</u> uality <u>H</u> elp	
Mode: Multiple Alignment M	Mode v Eont: 18 v	C/T at position 238
	****	******
34B-F 34M-F	CCGTGCACGCGTCATCCA CCGTGCACGCGTCATCCA	ATCCGTCGGCGACGGCATTGTCCGTCGCTCGGCCAATATGCCTCGAC ATCCGTCGGCGATGGCATTGTCCGTCGCTCGGCCAATATGCCTCGAC

Summary

- Tm and Tb amplicons of 69 Genes have been sequenced and SNPs have been identified (on average 1SNP/ 400bp and SNPs identified in intronic regions are more)
- Amplicons of 16 Genes needs to be cloned for sequencing
- Genes have been identified using Fgenesh from 2AL assembly and 245 primer pairs have been designed from the 2AL contigs, which will be used for analysis of *T. monococcum* and *T. boeoticum*

Genic Similarity with other species

4	A	В	С	D	E	F	G	Н	-	J	К
1	Contigid	Query	Wheat EST	Rice Gene	Brachy Gene	Sorghum Gene	Pfam Description				l.
2	2AL_Contig_224342, 2AL_Contig_380180	RFL_CONTIG5906	CV779237	LOC_Os05g01810	Bradi2g39320	Sb01g005350	xylem cys	teine pro	teinase 2	precursor,	putative
3	2AL_Contig_293108, 2AL_Contig_308568,2/	RFL_CONTIG3876	CA486980	LOC_Os05g03820	Bradi2g38340	Sb09g002470	glutamate	ecystein	e ligase, o	chloroplast	: precursi
4	2AL_Contig_112218, 2AL_Contig_16693, 2A	TPLB0016K24	TC373054	LOC_Os05g37700	Bradi2g23720	Sb01g008030	periplasm	iic beta-gl	ucosidas	e precurso	r, putativ
5	2AL_Contig_230864, 2AL_Contig_303032,	RFL_CONTIG4783	CA593309	LOC_Os05g04950	Bradi2g36650	Sb02g032390	protein bi	inding pro	tein, put	ative, expr	ressed
6	2AL_Contig_108662, 2AL_Contig_12060	TPLB0057122	TC370628	LOC_Os05g50380	Bradi2g14970	Sb01g008940	glucose-1	-phospha	te adenyl	yltransfera	ase large
7	2AL_Contig_274280, 2AL_Contig_352819, 2	RFL_CONTIG615	TC440141	LOC_Os03g25350	Bradi3g29320	Sb08g005360	LTPL36 - P	rotease ir	hibitor/s	eed storag	ge/LTP fa
8	2AL_Contig_300422, 2AL_Contig_330954, 2	TPLB0006M22	TC386157	LOC_Os01g09230	Bradi2g09220	Sb09g001200	expressed	d protein			
9	2AL_Contig_396922	RFL_CONTIG3866	CN008941	LOC_Os01g35040	Bradi2g40480	Sb03g023980	ZOS1-09 -	C2H2 zind	finger pr	otein, exp	ressed
10	2AL_Contig_403698	TPLB0016J07	BJ255035	LOC_Os10g41770	Bradi3g33820	Sb01g046380	expressed	d protein			
11	2AL_Contig_272768, 2AL_Contig_283376	TPLB0001M14	CD870689	LOC_Os05g05830	Bradi2g35690	Sb09g003920	bifunction	hal protei	n folD, pu	tative, exp	pressed
12	2AL_Contig_311018, 2AL_Contig_322074, 2	TPLB0019E21	CA667693	LOC_Os05g06440	Bradi2g34950	Sb09g004380	dnaJ hom	olog subf	amily B m	ember 11	precurso
13	2AL_Contig_295599, 2AL_Contig_38785	RFL_CONTIG698	BF478350	LOC_Os05g46330	Bradi2g18250	Sb04g006940	MYB fami	ly transcri	ption fac	or, putativ	/e, expre
14	2AL_Contig_360919	TPLB0004C22	CA647080	LOC_Os10g31790	Bradi3g27860	Sb01g020290	ubiquitin	family pro	otein, put	ative, exp	ressed
15	2AL_Contig_260866, 2AL_Contig_362331	TPLB0006N16	FG618842	LOC_Os05g06430	Bradi2g35020	Sb03g013630	OsPDIL2-1	l protein d	lisulfide i	somerase	PDIL2-1,
16	2AL_Contig_348603, 2AL_Contig_32889, 2A	RFL_CONTIG4329	TC426173	LOC_Os10g42110	Bradi3g33950	Sb01g028460	protein ki	nase fami	ly proteii	n, putative	, express
17	2AL_Contig_312718, 2AL_Contig_404292	TPLB0005C24	CV779443	LOC_Os10g30600	Bradi3g27640	Sb01g020900	tyrosine p	protein kir	nase dom	ain contair	ning prot
18	2AL_Contig_169012, 2AL_Contig_364629, 2	, TPLB0057K08	TC436475	LOC_Os03g57220	Bradi1g58480	Sb01g005960	hydroxya	cid oxidas	e 1, putat	ive, expre	ssed
19	2AL_Contig_377391	TPLB0017G07	BQ237279	LOC_Os05g26890	Bradi2g60350	Sb01g045320	G-protein	alpha sut	ounit, put	ative, expi	ressed
20	2AL_Contig_326642, 2AL_Contig_156049, 2	TPLB0008D23	BJ303921	LOC_Os05g11730	Bradi2g32620	Sb01g001760	CGMC_GS	K.7 - CGM	Cinclude	s CDA, MA	PK, GSKS
21	2AL_Contig_311749, 2AL_Contig_33137, 2A	RFL_CONTIG4272	BE516065	LOC_Os05g01990	Bradi2g39180	Sb09g020890	DEAD-bo>	(ATP-dep	endent R	NA helicas	e, putati
22	2AL_Contig_369843, 2AL_Contig_413298, 2	TPLB0009L18	TC391113	LOC_Os05g49520	Bradi2g14730	Sb03g027960	CTP synth	ase, putai	ive.		
23	2AL_Contig_293787, 2AL_Contig_303526, 2	TPLB0052B04	CJ523807	LOC_Os02g16830	Bradi2g38060	Sb09g000830	glutelin, p	outative, e	expressed	k	
24	2AL_Contig_406930, 2AL_Contig_391343, 2	RFL_CONTIG1825	TC384054	LOC_Os03g53500	Bradi1g08850	Sb01g008310	helicase c	onserved	C-termin	al domain	containi
25	2AL_Contig_206064, 2AL_Contig_160058, 2	TPLB0047D05	CA676608	LOC_Os05g09500	Bradi2g33380	Sb09g005840	hexokina:	se, putati	/e, expre	ssed	
26	2AL_Contig_379654	TPLB0034G21	CA721563	LOC_Os08g32130	Bradi3g35900	Sb07g020350	heat shoc	k protein	DnaJ, put	ative, expi	ressed
27	2AL_Contig_404206	RFL_CONTIG3261	CV766096	LOC_Os05g02650	Bradi2g37530	Sb09g001810	expressed	d protein			
28	2AL_Contig_224342, 2AL_Contig_380180	TPLB0006H24	CA647080	LOC_Os10g31790	Bradi3g27860	Sb01g020290	ubiquitin	family pro	otein, put	ative, exp	ressed
29	2AL_Contig_293108, 2AL_Contig_308568, 2	rTPLB0058M16	CA717499	LOC_Os06g11210	Bradi2g35900	Sb09g000520	12-oxoph	ytodienoa	ite reduc	ase, putat	ive, expr
30	2AL_Contig_112218, 2AL_Contig_16693, 2A	TPLB0034J24	BJ303921	LOC_Os05g11730	Bradi2g32620	Sb01g001760	CGMC_GS	K.7 - CGM	Cinclude	s CDA, MA	PK, GSKS

SUMMARY

- Using HICF we have fingerprinted >50 000 BAC clones 2AL and about 60% of these yielded good fingerprint suitable for contig generation
- More than 21,000 fingerprinted BACs were used for generating contigs and ~11,000 BACs were included in contigs of varying sizes
- Clones with Minimum Tilling Path (MTP) have also been generated
- Fingerprinting and contig generation of the remaining BACs is in progress
- De novo hybrid assembly resulted into 425,821 contigs for 2AL, covering 63% of total genome of 2AL
- Assembly of both the arms was analyzed for the repetitive elements includes 4,27,402 repeat elements for 2AL

SUMMARY

- About 28,000 gene sequences have been identified in 2A
- SSR mining was done on assembled data and includes 22,460 SSRs for 2AL
- Bin mapped ESTs of chromosome 2A were used to fish out the full length cDNAs which were then used to BLAST against assembled data to identify corresponding gene sequences in the assembled data
- Primers were designed from the CS sequence data and used for amplifying *T. boeoticum* and *T. Monococcum* to generate SNP markers
- SSR and SNP markers will be subsequently mapped on RIL population of diploid wheat (*T. boeoticum/T. monococcum*) to enrich the genetic map of 2A which can then be used to align the physical map to the genetic map

Group Meetings

Dr Ananth Kumar, WSU visited PAU from Dec 22-31, 2012

Network Group members met in May 2013

THANKS

International Collaborators

- 1. Dr. Jaroslav Dolezel Czech Republic
- 2. Catherine Feuillet INRA, France
- 3. Bikram S. Gill KSU, USA
- 4. Sunish Seghal KSU, USA
- 5. Beat Keller University of Zurich, Switzerland
- 6. Jane Rogers IWGSC, UK
- 7. Kellye Eversole Executive Director, IWGSC