# IWGSC protocols

Second generation sequencing for marker discovery

Gather information on who is sequencing which species/varieties Possibly collection of all gene sequences in a combined database

2. Methods for library production

Determine if efforts should be made to remove mt and chloroplast DNA

3. Standard QC for data evaluation and comparison between datasets

It would be important to have a discussion what people use as criteria. Sequence quality for assemblies, Cutoff for BLAST searches, etc.

4. Approaches to SNP discovery

## Who is doing what?

| Country         | Target                       | Coverage | Technique    |  |
|-----------------|------------------------------|----------|--------------|--|
| UK              | WGS                          | 5x       | 454 Titanium |  |
| UK              | 3DL                          | 75x      | GAII PE      |  |
| TriticeaeGenome | Group 1                      | 1.5x     | 454 Tit      |  |
| France          | 3B                           | 2x       | GAII         |  |
| Australia       | WGS                          | 0.2x     | GAII PE      |  |
| Australia       | 7DS                          | 16x      | GAII PE      |  |
| US              | 3A                           | 2x       | 454 Tit      |  |
| Italy           | 5A                           | 2x       | 454 Tit      |  |
| Switzerland     | A/B/D ancestors<br>and R(ye) |          | 454 Tit      |  |
| China           | D (Ae.tauschii)              | 40x      | GAII PE      |  |
| China           | A (T. Urartu)                | 40x      | GAII PE      |  |

Gather information on who is sequencing which species/varieties Possibly collection of all gene sequences in a combined database

#### 2. Methods for library production

Determine if efforts should be made to remove mt and chloroplast DNA

3. Standard QC for data evaluation and comparison between datasets

It would be important to have a discussion what people use as criteria. Sequence quality for assemblies, Cutoff for BLAST searches, etc.

4. Approaches to SNP discovery

Gather information on who is sequencing which species/varieties Possibly collection of all gene sequences in a combined database

2. Methods for library production

Determine if efforts should be made to remove mt and chloroplast DNA

#### 3. Standard QC for data evaluation and comparison between datasets

It would be important to have a discussion what people use as criteria. Sequence quality for assemblies, Cutoff for BLAST searches, etc.

4. Approaches to SNP discovery

# **Coverage of 1AS genes**

Pm3

High coverage in LRR region

➔ Maybe partially duplicated else where



RGL9

Many reads at exacly the same positions Uneven amplification?



# Amplified vs. non-amplified 454

## Barley whole genome



Barley 1H amplified



### Wheat whole genome



## Wheat 1AS amplified



# Data visualisation





genomic sequence



Insert size vs Nucleotide position of 7DS short-read libraries versus OsCh8 24495kb-24600kb genomic fragment



Insert size of 7DS\_37\_003 read-pairs vs nucleotide position of read-pair hits on OsCh8\_24495kb-24600kb



#### Insert size vs Nucleotide position of 7DS short-read libraries versus OsCh8 25305kb-25415kb genomic fragment



Insert size of 7DS\_37\_003 read-pairs vs nucleotide position of read-pair hits on OsCh8\_25305kb-25415kb



#### Insert size vs Nucleotide position of 7DS short-read libraries versus OsCh8 27800kb-27905kb genomic fragment



Insert size of 7DS\_37\_003 read-pairs vs nucleotide position of read-pair hits on OsCh8\_27800kb-27905kb









| <u>}</u> [            | http://flora.acpfg.com.au/w | iki/index.php/Short_Read_Metadata         | 🔂 🏠 🔹 🔀 • Google | 🔎 – 🗗 🔀 |
|-----------------------|-----------------------------|-------------------------------------------|------------------|---------|
| ata - Acpfg Bioinfo 🔶 |                             |                                           |                  |         |
|                       | MSk                         | Skippy, Kangaroo rumen metagenomic sample |                  |         |
|                       | MDa                         | Daisy, Cow rumen metagenomic sample       |                  |         |

#### lllumina Data

| Approx. Date of Run | Lane Number/s | Species          | Biosource/Cultivar | Library Name | Read Length | Predicted Insert(*) | Actual              |
|---------------------|---------------|------------------|--------------------|--------------|-------------|---------------------|---------------------|
| Prior to Dec 2008   | PBI           | Brassica rapa    | Chiifu             | BrC_37_001   | 35 bp       | 3-4 kbp             | 2800 bp i           |
| Prior to Dec 2008   | PBI           | Brassica rapa    | Chiifu             | BrC_37_002   | 35 bp       | 3-4 kbp             | 2800 bp i           |
| Prior to Dec 2008   | РВІІ          | Brassica rapa    | Chiifu             | BrC_27_001   | 35 bp       | 3-4 kbp             | 2700 bp (           |
| 17 Dec 2008****     | 1-5           | Brassica rapa    | Chiifu             | BrC_03_001   | 36 bp       | 300 bp              | 140 bp 🖻            |
| -"-                 | 1             | Brassica rapa    | Chiifu             | BrC_03_001   | 36 bp       | 300 bp              | 140 bp 🗗            |
| -"-                 | 2             | Brassica rapa    | Chiifu             | BrC_03_001   | 36 bp       | 300 bp              | 140 bp 🗗            |
| -"-                 | 3             | Brassica rapa    | Chiifu             | BrC_03_001   | 36 bp       | 300 bp              | 140 bp 🗗            |
| -"-                 | 4             | Brassica rapa    | Chiifu             | BrC_03_001   | 36 bp       | 300 bp              | 140 bp 🗗            |
| -"-                 | 5             | Brassica rapa    | Chiifu             | BrC_03_001   | 36 bp       | 300 bp              | 140 bp 🗗            |
| 17 Dec 2008****     | 6-7           | Barley           | Morex              | HvM_03_001   | 36 bp       | 300 bp              | 210 bp <b>&amp;</b> |
| -"-                 | 6             | Barley           | Morex              | HvM_03_001   | 36 bp       | 300 bp              | 210 bp 🗗            |
| -"-                 | 7             | Barley           | Morex              | HvM_03_001   | 36 bp       | 300 bp              | 210 bp 🗗            |
| 20 Feb 2009         | 1             | Pongamia pinnata | Fp4PG              | Pon_03_001   | 36 bp       | 300 bp              | 390 bp 🗗            |
| 20 Feb 2009         | 2             | Wheat            | Chinese Spring     | WCs_03_001   | 36 bp       | 300 bp              | 300 bp 🖻            |
| 20 Feb 2009         | 3             | Barley           | Morex              | HvM_03_002   | 36 bp       | 300 bp              | 210 bp 🗗            |
| 20 Feb 2009         | 4             | Brassica rapa    | Chiifu             | BrC_03_002   | 36 bp       | 300 bp              | 300 bp 🖻            |

bp 🛃 🚽

[edit]





Gather information on who is sequencing which species/varieties Possibly collection of all gene sequences in a combined database

2. Methods for library production

Determine if efforts should be made to remove mt and chloroplast DNA

3. Standard QC for data evaluation and comparison between datasets

It would be important to have a discussion what people use as criteria. Sequence quality for assemblies, Cutoff for BLAST searches, etc.

#### 4. Approaches to SNP discovery

# **Genes from 1AS**

Lr10 locus cv. Renan

All genes are hit by seveal reads

Coverage of genes ~0.5x

Coverage as in Pm3 locus



## **Coverage of 1AS genes**

## *Pm3* locus from cv. *Chinese spring*



Linear scale, stringency 100 bp / 98%