

Deep Learning *Methods to understand wheat (data)*

Fred Van Ex

Head of Trait Discovery Bayer Crop Science

Agenda

- // Deep Learning: What is it?
- // Applications
 - // Image Analysis
 - // Genomics
- // Bayer Innovation

ARTIFICIAL INTELLIGENCE A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Deep Learning does not require supervision

TRADITIONAL MACHINE LEARNING

DEEP LEARNING

Deep Learning relies on Artificial Neural Networks

Deep Learning works by layering information

How does it work

Forbes, 2016

What do you need for it to work

- ✓ Large high quality data set
- ✓ Measurable and describable goals
- ✓ Computing power
- Best used in tasks where the basic unit (pixel, word, nucleotide) has very little meaning by itself but where the combination of those units become meaningful

Self-driving cars

NVIDIA's self-driving car in action

Image Restoration

Isola et al, CVPR 2017

Restoring sound in videos

Owen et al,, arXiv:1512.08512 [

Natural Language Processing

- Text Classification
- Language Modeling
- Speech Recognition
- Caption Generation
- Machine Translation
- Document Summarization
- Question Answering

. . .

Deep Learning and Biology Genomics

Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks

David R Kelley¹, Jasper Snoek and John Rinn

NATURE METHODS | BRIEF COMMUNICATION

< 🖨

Predicting effects of noncoding variants with deep learning-based sequence model

Jian Zhou & Olga G Troyanskaya

NATURE BIOTECHNOLOGY | COMPUTATIONAL BIOLOGY | ANALYSIS ペ 偏 日本語要約

Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey

https://github.com/hussius/deeplearning-biology)

The human splicing code reveals new insights into the genetic determinants of disease

Hui Y. Xiong^{1,2,3,*}, Babak Alipanahi^{1,2,3,*}, Leo J. Lee^{1,2,3,*}, Hannes Bretschneider^{1,3,4}, Daniele Merico^{5,6,7}, Ryan K. C. Yuen^{5,6,7}, Yimin Hua⁸, Serge Gueroussov^{2,7}, Hamed S. Najafabadi^{1,2,3}, Timothy R. Hughes^{2,3,7}, Quaid Morris^{1,2,3,7}, Yoseph Barash^{1,2,9}, Adrian R. Krainer⁸, Nebojsa Jojic¹⁰, Stephen W. Scherer^{3,5,6,7}, Benjamin J. Blencowe^{2,5,7}, Brendan J. Frey^{1,2,3,4,5,7,10,†}

+ Author Affiliations

+[†]Corresponding author. E-mail: frey@psi.toronto.edu

+* These authors contributed equally to this work.

Science 09 Jan 2015: Vol. 347, Issue 6218, DOI: 10.1126/science.1254806

BAYER E R **Opportunities for Deep Learning in Genomics**

- Functional annotation genome
- **Deep Learning**
- Phenotype/trait prediction
- Plant modeling

Plant and Animal Genome XXVI /// January 2018

Page 14

DeepVariant Google

A universal SNP and small indel variant caller with deep neural networks

Deep Learning @bayer

Deep Learning – Core Platform

Scope Bayer is developing knowledge and expertise in Deep Learning techniques.

Building up up a central Deep Learning core platform containing:

(i) state-of-the-art GPU hardware,

(ii) a sustainable and scalable Deep Learning framework which is able to handle the large amount of data,

(iii) data management scheme

Results

- 1 GPU server is running
- 3 additional GPU server are about to be ordered
- powerful computational resource at Bayer
- scalable DL framework established
- fully integrated

The Deep Learning infrastructure is up and running!

Joren Retel

Deep Learning for Phenotype-Genotype Analysis

Develop new approaches for **analyzing complex phenotype data** sets

Scope

Purpose: Bridging phenotype-genotype gaps, improving the decision making for novel therapeutic targets, genetic biomarkers, drug discovery, patient selection and stratification, highly transferable to other genomic studies.

Successful clustered multi-omics data of 10k cancer cases. Right figure shows non-overlapping groups of clusters.

BAYER Phenotype-based Annotation of Genetic Variation

Thomas Janssens

The functional annotation of genomic variation, and its effect on the phenotype is challenging.

Purpose

Scope

- extract plant features from phenotyping platforms
- utilize deep learning as an alternative to GWAS to link genetic variation to phenotypic variation

Successful identification of multiple plant structures. Integration into genetic studies for traits of interest.

Gene Function Translation across Species

Scope

Genetic function has been translated via homology reasoning, but delineating correct homology is difficult

Purpose:

- create a holistic framework of genomics features to determine gene function
- determine which genomics features underlie function

Hollunder Heyndrickx

Sadegh

Mohammadi

Moving from closed Innovation towards Innovation Networks/Ecosystems

"Increasingly, a large industrial company needs to think about itself as a node in a much broader network, and it needs "competition" not simply about how we build market share but about how we capture innovation share from across a very broad ecosystem." – Gary Hamel¹

Harnessing external innovation power to solve big challenges

Thank you!

