Utilization of a Sequenced EMS-Mutagenized Population to Characterize the Photoperiodic Response in Wheat

Maria Alejandra Alvarez, Chengxia Li, Huiqiong Lin, Anna Joe, Mariana Padilla, Daniel P. Woods, Jorge Dubcovsky*

Howard Hughes Medical Institute

Photoperiod sensitive and insensitive wheats

Photoperiod sensitive (PS): Ancestral state.
Under SD it transitions at ~8 leaves
but heads very late (>180 d)

Photoperiod 'insensitive' (PI): Accelerated heading in SD (still earlier in LD). Deletions in *PPD1* promoter.

The wheat photoperiod pathway: previous knowledge

Loss-of-function mutations in either *PHYB* or *PHYC* result in late heading

The light activation of *PPD1* by *PhyB* is mediated by *ELF3*

The large delay in heading time in *phyB* mostly disappears in *elf3 phyB*

LD: Long day **SD**: short day

PS= photoperiod
 sensitive
PI= reduced sensitivity
 (promoter deletion)

Effect of phyB and elf3 mutations on PPD1 and FT1 expression under LD

In the phyB mutant, both PPD1 & FT1 are downregulated.

This correlates with the late heading time.

Ft1

In the phyB elf3 combined mutant, PPD1 & FT1 transcription is restored

This correlates with the earlier heading time

phyB and phyC mutants do not affect the expression levels of ELF3

None of the differences between WT and phyB or WT and phyC were significant in LD and SD

ELF3 protein interacts with PHYB and PHYC in yeast-two-hybrid assays

- ELF3 showed a strong interaction with the C-terminal portion of PHYB and PHYC.
- The interaction with the N-terminal part was strong in N-PHYB but weak in N-PHYC.
- Autoactivation tests showed no interaction with empty vectors for ELF3 and PHYB clones.
- We hypothesize that the protein interactions between phytochromes and ELF3 play an important role in the regulation of ELF3 activity.

UBI::ELF3:HA protein is modified by light

UBI::ELF3:HA transgene complements early heading of elf3

- ELF3 is degraded 10 m after lights are on in ZT0.
- A lower ELF3 band accumulates after lights are off.

UBI::ELF3:HA protein is modified by light

- ELF3 lower band is modified 10 min after lights are turned on (ZT10).
- Then, even under the light, the low band forms again and the upper bands decreases.

ChIP-PCR experiment using UBI::ELF3:HA/elf3 plants

Effect of the elf3 mutations on PPD1 and FT1 expression under LD

Loss-of-function mutations in *ppd1* delay heading time in the absence of *elf3*

- elf3 loss-of-function accelerates flowering both in the presence or absence of Ppd1 (PI).
- The photoperiodic response (SD-LD) was reduced in absence of ELF3.
- The elf3 ppd1 mutant headed significantly later than the single elf3 mutant PPD1 can accelerate heading in the absence of ELF3, both under LD and SD.
- elf3 ppd1 headed significantly earlier than the single ppd1 mutant under both LD and SD ELF3 can delay heading time in a PPD1-independent manner.

SUMMARY

- ELF3 operates between the phytochromes and *PPD1*, and is an important part of the mechanism by which light activates *PPD1* transcription.
- ELF3 protein is modified by light.
- ELF3 is a direct repressor of PPD1 particularly at the end of the night and dawn.
- In the absence of ELF3 and PPD1 wheat still has a photoperiodic response likely mediated by CONSTANS

Jorge Dubcovsky

Huiqiong Liu

Anna Joe

Mariana Padilla

