SEQUENCING THE WHEAT

Genome has long been considered an insurmountable challenge. World demographics, however, have left society with no choice — wheat production must increase to feed a growing planet. Improving average wheat yields has become a major objective with genome sequencing as its prerequisite. Last year, the International Wheat Genome Sequencing Consortium (IWGSC) unveiled the first draft sequence of the bread wheat genome. A complete reference sequence that will pave the way to improved wheat varieties could be achieved by 2018.

The European Union is the world’s leading wheat producer, ahead of China and the United States, with 20 percent of the total world harvest (140 million tons in 2013) on 64 million acres cultivated. Today, 4.6 million European farmers depend on this crop for their income. The EU leads the world in wheat improvement with a significant number of seed companies involved with breeding and production of wheat and wheat seeds, as well as world-leading academic research institutes engaged in wheat research. In 2013, the contribution of wheat (net output) to the EU economy was estimated to be more than 9 billion euros.

With a projected world population of 9.6 billion by 2050, the Food and Agriculture Organization of the United Nations (FAO) forecasts that demand for wheat will increase by 60 percent. To meet that demand, annual yield increases must grow from the current level of less than 1 percent to at least 1.7 percent. Since availability of new land is limited to preserve biodiversity and water and nutrient resources are becoming scarcer, the majority of this increase has to be achieved through crop and trait improvement on land currently cultivated.

Paradigm Shift

For years, genomic resources for wheat improvement were lagging behind other major crops such as maize and rice. Because of its size (17 gigabytes, five times larger than the human genome) and complexity (three sets of
Join Us In Chicago
FOR AMERICA’S LARGEST SEED INDUSTRY CONFERENCE

70th Corn & Sorghum Seed Research Conference
45th Soybean Seed Research Conference • Seed Expo 2015

CSS 2015 & Seed Expo
December 7-11, 2015 | Chicago, IL

REGISTER TODAY!
amseed.org
chromosomes with highly similar gene contents and a large proportion of repetitive DNA), wheat was considered impossible to sequence. Thus, despite its socioeconomic importance and the recognition of the power that a genome sequence brings to breeding programs, bread wheat remains one of the last major crops without a high-quality reference genome sequence.

The IWGSC was created in 2005 to change this paradigm. The international public-private collaborative consortium was established by a group of wheat growers, scientists and breeders. Its goal is to deliver a publicly available, high quality genome sequence of bread wheat that can serve as a foundation for wheat improvement and help to ensure profitability throughout the wheat value chain.

The IWGSC is led by a board of directors, that develops the overall strategy, and a leadership team in charge of daily management. The coordinating committee is comprised of sponsors and leaders of IWGSC projects. The committee is responsible for establishing the overall scientific strategy and the strategic roadmap.

IWGSC membership is open to any individual who is interested in supporting the goals and activities of the consortium.

A Milestone-based Strategy
To circumvent genome complexity, the IWGSC adopted a “chromosome-based approach,” made possible through technological advancements in flow-sorting of chromosomes. The IWGSC follows a milestone-based, adaptable strategy for all of the 21 bread wheat chromosomes.

The three key milestones on the roadmap are to:

- Produce draft sequences that provide a gene catalogue and localize as many genes along the chromosomes as possible.
- Generate physical maps that serve as substrates for sequencing.
- Complete map-based reference sequences that accurately order more than 90 percent of the genomic information and link the sequence to genetic and phenotypic maps.

While the draft sequence provides useful information to breeders for marker-assisted selection, the physical map-based strategy remains the only approach that can efficiently deliver, with today’s sequencing technology, a high-quality, ordered sequence comparable to the gold standard reference sequence of rice. The IWGSC regularly adapts its strategy to integrate the newest sequencing technologies while maintaining the objective of a high-quality reference sequence.

A physical map-based sequence is the best resource for understanding genome function, as it provides access to the complete gene catalogue, permits the identification and functional analysis of regulatory features and chromosomal organization, and provides accurate maps of genetic markers and intra-and inter-species variation that can be associated with specific traits such as quality, yield, drought tolerance or durable disease resistance.

Significant Achievements
The first milestone was reached in July 2014 with the publication, in the journal Science, of draft sequences for each of the 21 wheat chromosomes and a putative order for about half of the genes on each chromosome.

“While not yet representing a complete sequence, the capacity for the first time to identify the localization of a gene on a wheat chromosome in silico is already helping us to speed up our breeding efforts and map-based cloning projects for trait improvement,” says Catherine Feuillet, head of trait research at Bayer CropScience and IWGSC board member.

The completion of the second milestone is well underway, as physical maps for 16 chromosomes have been developed and five draft maps should be finished before the end of 2016.
Universal Coating Systems is dedicated to your seed coating needs. **OVER 30 YEARS OF EXPERIENCE** with equipment design, manufacturing and installation on every continent on the globe. From the smallest laboratory system to complete large-scale seed coating plants. For all your seed needs, we’ve got you covered.

POLYMERS & COLORANTS

- Seed coating polymers that provide a smooth, even coverage
- Many color offerings. Give your coated seed a natural appearance with UNICOAT NUDE®
- Custom blending

Dave Waldo
c: 503-507-3499 p: 503-838-6568 e: dave@universalcoating.net www.ucoatsystems.com
Progress toward the final milestone is gathering momentum. The first reference sequence of a wheat chromosome, 3B, was completed in France and published in 2014 in the same special issue of Science as the draft sequences. Reference sequencing of 11 other chromosomes is underway in 11 countries and will be completed during the next 18 months. The IWGSC currently seeks funding for the remaining nine chromosomes, and proposals for four are pending before national funding agencies.

Successful and Sustainable Public-Private Partnership

International research laboratories and seed companies have been instrumental in achieving IWGSC milestones. The wheat genome sequencing project is an example of a successful and sustainable public-private partnership with clear and consistent objectives designed to produce resources for breeders and, ultimately, growers.

The chromosome-based approach allowed the IWGSC to support building skills and resources in many countries by engaging research teams in the development of physical maps and sequences. Even though this international participatory effort adds to coordination challenges, it facilitates cost sharing and rapid application of the data into the numerous wheat breeding programs around the world.

The IWGSC currently has projects in 21 countries and 1,100 members, representing 361 research institutions or private companies in 55 countries. An additional 350 individuals from 56 institutes and five additional countries are registered to use the publicly available data that has been generated by IWGSC projects.

Contributions and Benefits For Seeds Companies and Growers

Seed companies and grower organizations have been involved in the consortium since its estab-
Establishment. An essential aspect of their contribution is to provide input on strategic orientations. For example, their input was critical at the beginning as it was necessary to decide which wheat variety should be sequenced. Bread wheat was selected as that is the variety grown by 95 percent of the farmers.

Simultaneously, seed companies wanted access to the sequence of bread wheat, rather than that of wild diploid wheat, because they wanted tools that could have a direct, immediate impact on their wheat breeding programs.

Another contribution is financial. By paying an annual sponsorship fee to the IWGSC, seed companies and grower organizations enable the professional management of the consortium, the organization of workshops, and the development of communication materials to provide platforms for developing and advancing projects.

Finally, seed companies can support projects directly if they wish to accelerate the global achievement of the objectives. For example, in 2011, Graminor and Biogemma provided the first funding support for the draft sequencing of the 21 chromosomes, while Bayer CropScience provided 1 million euros in 2014 to achieve the physical maps.

In return for their support, seed companies and grower organizations are part of the coordinating committee and have pre-publication access to all data which can greatly accelerate the implementation of the sequence-based resources into their own breeding programs.

VARIETAL IMPROVEMENTS

VARIETAL IMPROVEMENTS

Such as a reference sequence will increase future investments in wheat breeding for the benefit of growers because companies will have a better mechanism for value capture.

It’s been a challenge to secure funding for sequencing the wheat genome. In contrast to other sequencing projects, the IWGSC has not been allocated a “lump sum” for the whole sequencing project, but has had to work with project leaders all over the world to secure funding from national agencies and private companies.

During the past 10 years, the IWGSC has raised approximately 50 million euros for physical mapping and sequencing projects. About 11.5 million euros in funding is still needed to produce, assemble, and make available all remaining sequence data.

Provided that funding is secured soon, the IWGSC anticipates that a high-quality genome sequence for bread wheat could be publicly available by 2018. SW