The Reference Sequence of Wheat and IWGSC Phase II:
Ensuring a Full Genomic Toolbox for Wheat

Kellye Eversole
IWGSC Executive Director

Hélène Bergès
Member of the IWGSC Coordinating Committee

WHEATS&WOMEN INTERNATIONAL CONFERENCE
Roma – June 2018
Plant’s genome exhibits high levels of complexity

- Large genome size
- High level of transposable elements
- Polyploidy
2005 – IWGSC Goal & Vision

Goal
• Lay a foundation to accelerate wheat improvement
• Increase profitability throughout the industry

Vision
• High quality annotated genome sequence, comparable to rice
• Physical map-based, integrated and ordered sequence
The Reference Sequence for the Bread Wheat Genome

Frédéric Choulet
GDEC, INRA, UCA, Clermont-Ferrand, France
Concerted integration of resources: RefSeq v1.0
RefSeq v1.0
A fully annotated and anchored reference sequence assembly of the wheat genome

Physical maps: 100% BAC-seq: 3B (Choulet et al. 2014) + 8 chr.

NRGene Illumina: IWGSC WGS

BACs

sorted chromosomes

DeNovoMAGIC

IWGSC WGA v0.4 (2016)
+ HiC BACs WGP™ tags
Genetic maps
Bionano maps
Rad. hyb maps

IWGSC RefSeq v1.0 (2017)
Physical maps for all chromosomes
- 1,839,128 BACs

WGP tags (mostly from MTP BACs) for all chromosomes except 3B
- 4,305,249 unique tags for 693,697 BACs

BAC sequence assemblies
- 8 chr: 1A, 1B, 3B, 3D, 6B, 7A, 7B, 7D + 2 chr arms: 4AL, 5BS
- 52,890 BACs (9.7 Gb), N50=68 kb

BioNano maps for 7A, 7B and 7DS
- 1,335 BioNano contigs

4.7 M molecular markers
IWGSC RefSeq v1.0 – Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>total size</td>
<td>14.5 Gb</td>
<td>(genome size ~15.5 -> 94%)</td>
</tr>
<tr>
<td>completeness</td>
<td>97-99%</td>
<td></td>
</tr>
<tr>
<td>contig N50</td>
<td>52 kb</td>
<td></td>
</tr>
<tr>
<td>scaffold N50</td>
<td>7 Mb</td>
<td></td>
</tr>
<tr>
<td>superscaffold N50</td>
<td>23 Mb</td>
<td></td>
</tr>
</tbody>
</table>

21 pseudomolecules:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>total size</td>
<td>14.1 Gb (97%)</td>
<td></td>
</tr>
<tr>
<td>superscaffolds</td>
<td>1601 (avg 76 per chr.)</td>
<td></td>
</tr>
</tbody>
</table>
IWGSC RefSeq v1.0 – Genome annotation pipeline

- GDEC INRA Clermont, France – Rimbert Leroy Choulet et al.
- PGSB Munich, Germany – Spannagl Twardziok et al.
Annotation – gene models

- **v1.0**: automated
- **v1.1**: incorporate 3685 manually annotated genes (available upon publication)

<table>
<thead>
<tr>
<th>Category</th>
<th>A subgenome</th>
<th>B subgenome</th>
<th>D subgenome</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC genes</td>
<td>35345</td>
<td>35643</td>
<td>34212</td>
<td></td>
</tr>
<tr>
<td>LC genes</td>
<td>51585</td>
<td>58359</td>
<td>44835</td>
<td></td>
</tr>
<tr>
<td>Pseudogenes</td>
<td>96404</td>
<td>105349</td>
<td>79382</td>
<td></td>
</tr>
</tbody>
</table>

- Total HC genes: 107,891
- Total LC genes: 161,537
- Total pseudogenes: 303,818
Annotation – transposable elements

- CLARITE, TREP, *denovo* fl-LTR-RTs detection...
- 3,968,974 elements belonging to 505 families (84% <=> 11.9 / 14.1 Gb)

- Conserved TE composition of A-B-D (no family specific to 1 subgenome)
- Complete reshuffling of TEs between homeologous loci
- TE activity after polyploidization very limited

86% 85% 83%

Coding DNA
Unannotated

CACTAs
LINEs
RLX
Copia
Gypsy

...505 families

TE companion paper...
Genome partitioning

- R1/3 = distal
- C = proximal
- R2a/b = interstitial

R1/3 = high gene / low TE
A-B-D comparative analyses

Analysis of gene families of wheat

Gene family expansion/contraction associated with traits targeted by breeder selection

- 26080 gene families
- 33% expanded in the wheat lineage / 0.1% contracted families
- 72% expanded in A+B+D

GO/PO/TO term enrichment and expanded gene families:

- morphological traits related to leaf, spike and root development, leaf size, tillering, vegetative growth and development, seed, endosperm, and embryo-development and morphology
- grain yield and quality (seed maturation, dormancy and germination)
- abiotic stress tolerance (salt stress, cold stress)

B sub-genome expanded families enriched for genes related to plant and leaf size and development, tillering and vegetative growth time:

predominant impact of the B genome on vegetative plant growth and development
Transcriptome atlas

Atlas of transcription reveals trait associated gene co-regulation networks

- 850 RNASeq samples – 32 tissues
 - 85% HC genes expressed
 - 49% LC genes expressed

- Chromosome partitioning
 - Distal region genes expressed in fewer tissues and enriched for responses to stress

Genes located in the distal R1 and R3 regions: lower expression breadth than those in the proximal regions
Reference-guided dissection of an insect/abiotic stress resistance QTL for improved marker assisted selection

- traits of agronomic importance are inherited as QTL
- informative DNA markers in strong linkage disequilibrium with QTL are essential
- IWGSC RefSeq v1.0 provides template for assigning molecular markers to coordinates in linear DNA molecules anchored to high density molecular maps
- Example described: dissecting a QTL associated with insect/abiotic stress resistance
 ➢ Diagnosis marker

➢ Combining this knowledge with major loci selected for breeding programs provides a new framework for breeders to tackle the challenges of the new agriculture (balance the selection processes for adaptation to biotic and abiotic stress, end-use quality, and yield improvement)
IWGSC RefSeq Data Access & Availability

https://wheat-urgi.versailles.inra.fr/Seq-Repository/

Pre-publication data access under Toronto Agreement:

- IWGSC WGA v0.4: June 2016
- IWGSC RefSeq v1.0: January 2017
- IWGSC Annotation v1.0: May 2017
- IWGSC Annotation v1.1: upon publication
- Manuscript under review

http://www.wheatgenome.org/Tools-and-Resources
IWGSC Phase II:
What’s Next for the IWGSC
Measuring the Impact of IWGSC RefSeq v1.0

476,595 BLAST searches
22,935 downloads

2017

> 100 papers

of papers referencing use of IWGSC RefSeq related resources since January 2017

- Genome structure (9)
- Genome expression (4)
- Genetic diversity (18)
- Trait genomics (67)
- Genome enabled breeding (9)
Measuring the Impact of IWGSC RefSeq v1.0

![Graph showing IWGSC members and data users from 2014 to 2017.](image)
Progress

2005 Vision

• High quality annotated genome sequence, comparable to rice
• Physical map-based, integrated and ordered sequence
Looking into the Future

- Achieve Gold Standard Reference
- Reach beyond reference to ensure a full genome-sequence based toolbox for wheat

Goal: Accelerate wheat improvement
Enhance breeding through an increased understanding of molecular basis of traits and their allelic diversity.

Reference sequences with high quality functional annotations.

Public, user-friendly, integrated databases and tools for all users.

An international, well connected and coordinated community.

A wheat Pan-genome representing the worldwide diversity.
From RefSeq v1.0 to IWGSC Gold Standard

- Pipeline for community generated manual annotation with future annotation releases
- Functional annotation
 - Gene family leaders
 - Applying machine learning techniques
- Closing gaps by incorporating new resources to build a IWGSC RefSeq v2.0

IWGSC leaders: Rudi Appels, Fred Choulet.....
IWGSC 2.0 Activities: Pan-Genome

• Develop a wheat pan-genome that represents the breadth of worldwide wheat diversity
• Reference quality for 8-12 landraces
• Diversity panels at draft quality
• Haplotype database
• Skim-sequencing and high throughput genotyping of many lines
• IWGSC team: Etienne Paux, Sébastien Praud,.....
IWGSC 2.0 Activities: Database

• Develop user-friendly, integrated databases and tools

• IWGSC Pan-genome Database Task Force
 – Fred van Ex, Bayer CropScience
 – Magalie Leveugle, Biogemma
 – Matthieu Conte, Syngenta
 – Michael Alaux, URGI-INRA
 –

• What tools do you want?
IWGSC 2.0 Activities: IWGSC Exome Array

- Wheat exome capture array based on IWGSC RefSeq annotation v1.1.

- Arbor Biosciences will offer enrichment reagents and an enrichment service

- Exome Team: Burkhard Steuernagel, Sreya Ghosh, Sébastien Praud, Hikmet Budak, Etienne Paux, Ute Bauhman

- Discussion: What modules would you like to see?
Conclusion

- IWGSC goal for high quality reference achieved

- IWGSC RefSeq v1.0 incorporates highly diverse community resources (WGS assembly + Hi-C links + physical maps + CSS + BAC sequences + millions of markers)

- Draft v0.4 + pseudomolecules v1.0 + annotation v1.0 available for download prior to publication

- IWGSC Phase II
 - Continued improvements from manual and functional annotation
 - IWGSC Exome Array based on the sequence
 - Pan-genome that covers the breadth of wheat diversity (landraces and elite var.)
 - Pan-genome database, visualization, and tools for breeders
Acknowledgments: Leaders & Major Contributors

IWGSC RefSeq PIs: Rudi Appels, Kellye Eversole, Nils Stein, Jane Rogers, Catherine Feuillet, Beat Keller

IWGSC Whole Genome Assembly PIs: Curtis Pozniak, Nils Stein, Frédéric Choulet, Assaf Distelfeld, Kellye Eversole, Jesse Poland, Jane Rogers, Gil Ronen and Andrew G. Sharpe

Whole Genome Sequencing and Assembly: Curtis Pozniak, Gil Ronen, Nils Stein, Omer Barad, Kobi Baruch, Frédéric Choulet, Gabriel Keeble-Gagnère, Martin Mascher, Andrew G. Sharpe and Gil Ben-Zvi

Hi-C Data Based Scaffolding: Nils Stein and Martin Mascher

Whole Genome Assembly QC & Analyses: Frédéric Choulet, Gabriel Keeble-Gagnère, Martin Mascher and Jane Rogers

Pseudomolecule Assembly: Frédéric Choulet, Gabriel Keeble-Gagnère and Martin Mascher

RefSeq Genome Structure and Gene Analyses: Manuel Spannagl, Frédéric Choulet and Daniel Lang

Automated Annotation: Frédéric Choulet, Manuel Spannagl, David Swarbreck and Hélène Rimbert

Manual Gene Curation: Rudi Appels and Hélène Rimbert

Sub-Genome Comparative Analyses: Frédéric Choulet, Manuel Spannagl and Daniel Lang

Transposable Elements: Frédéric Choulet, Thomas Wicker and Heidrun Gundlach

Phylogenomic Analyses: Daniel Lang and Manuel Spannagl

Transcriptome Analyses & RNASeq Data: Cristobal Uauy, Philippa Borrill and Ricardo H. Ramirez-Gonzalez

Whole Genome Methylome: Curtis Pozniak, Stephen Robinson and Andrew G. Sharpe

Histone Mark Analyses: Moussa Benhamed and Etienne Paux

BAC Chromosome MTP IWGSC-Bayer Whole Genome Profiling (WGP™) Tags: Jane Rogers and John Jacobs

Chromosome LTC Mapping & Physical Mapping Quality Control: Abraham Korol, Zeew Frenkel and Tzion Fahima

RH Mapping: Vijay Tiwari

Optical Mapping: Jaroslav Doležel

Recombination Analyses: Pierre Sourdille

Overall Gene Family Analyses: Rudi Appels, Manuel Spannagl and Daniel Lang

CBF gene family: Delfina Barabaschi

Dehydrin gene family: Pilar Hernandez and Sergio Galvez
Acknowledgments: Leaders & Major Contributors

NLR gene family: Burkhard Steuernagel

PPR gene family: Ian Small and Joanna Melonek

Prolamin gene family: Angéla Juhász and Tatiana Belova

WAK gene family: Kostya Kanyuka and Robert King

Genome Size Analysis: Jaroslav Doležel

MicroRNA and tRNA annotation: Hikmet Budak

Sst Team: Kirby Nilsen, Sean Walkowiak and Curtis Pozniak

Genetic Maps and Mapping: Gary Muehlbauer and Jesse Poland

BAC libraries and Chromosome Sorting: Jaroslav Doležel and Hana Šimková

BAC Pooling, BAC library Repository, and Access: Hélène Berges

IWGSC Sequence & Data Repository and Access: Michael Alaux

1A BAC Sequencing & Assembly: Curtis Pozniak, Andrew G. Sharpe, and Sean Walkowiak

1B BAC Sequencing & Assembly: Frédéric Choulet and Etienne Paux

1D, 4D, 6D Physical Mapping: Bikram Gill

2AL Physical Mapping: Kuldeep Singh

2AS Physical Mapping: Nagendra K. Singh and Jitendra P. Khurana

2B, 2D, 4B, 5BL & 5DL IWGSC-Bayer Whole Genome Profiling (WGP™) Physical Maps: Jane Rogers and John Jacobs

3AL Physical Mapping: Bikram Gill

3DS Physical Mapping & BAC Sequencing & Assembly: Jan Bartoš

4A Physical Mapping, BAC Sequencing, Assembly, & Annotation: Miroslav Valárik

5BS BAC Sequencing, & Assembly: Elena Salina, Nikolai Ravin and Konstantin Skryabin

6B BAC Sequencing & Assembly: Hirokazu Handa

7A Physical Mapping & BAC Sequencing: Rudi Appels

7B Physical Mapping, BAC Sequencing, & Assembly: Odd-Arne Olsen and Tatiana Belova

7DS BAC Sequencing & Assembly: Hana Šimková

7DL Physical Mapping & BAC Sequencing: Song Weining
Acknowledgments: Funders