

Understanding abiotic stress signalling in wheat through (phospho)proteomics

Prof. Dr. Ive De Smet

IWGSC Webinar 22/01/2020

INTRODUCTION – #ArtGenetics

The Harvesters - Pieter Bruegel the Elder, 1565 (downloaded from images.metmuseum.org/CRDImages/ep/original/DP119115.jpg; public domain)

INTRODUCTION – #ArtGenetics

Molecular Biologist

VIB-UGENT CENTER FOR PLANT SYSTEMS BIOLOGY

(Art) historian

INTRODUCTION – #ArtGenetics

Send pictures of art, such as paintings, with crops, fruits and vegetables to

The Harvesters - Pieter Bruegel the Elder, 1565 (downloaded from images.metmuseum.org/CRDImages/ep/original/DP119115.jpg; public domain)

INTRODUCTION – Wheat is under stress

Seed Borne Diseases

Rusts

Viral Diseases

Water Logging Stress

Crown and Root Rot Diseases

Heat Stress

Cold Stress

Minerals Stress

Drought Stress

Based on Afzal F. et al. (2015) Bread Wheat (Triticum aestivum L.) Under Biotic and Abiotic Stresses: An Overview. In: Hakeem K. (eds) Crop Production and Global Environmental Issues. Springer, Cham

INTRODUCTION – Abiotic stress impacts wheat yield

Ashraf et al (2012). Crop Production for Agricultural Improvement 1-15; www.seedquest.com/News/releases/2008/october/23973.htm

INTRODUCTION – High temperature reduces crop yield

RESEARCH FOCUS – Stress perception and early signalling

Stress tolerance

RESEARCH FOCUS – Stress perception and early signalling

INTRODUCTION – Protein pool expands through post-translational modifications

INTRODUCTION – Protein pool expands through post-translational modifications

INTRODUCTION – Protein pool expands through post-translational modifications

APPROACH – Phosphorylation is involved in everything

Humphrey et al (2015) Trends Endocrinol Metab 26(12):676-87; Vu, Stes et al (2016) Journal of Proteome Research 15(12):4304-4317

IWGSC PopSeq PGSB/MIPS v2.2 database (100 344 entries) (from wheatproteome.org)

VS.

IWGSC RefSeq v1.0 database for *Triticum aestivum* (137 052 entries) (wheaturgi.versailles.inra.fr/Seq-Repository/Assemblies)

 \rightarrow an increase of 30% and 34% of identifications for leaf and spikelet samples, respectively

 \rightarrow seems to correlate with the increase of 36.5% in the number of entries

APPROACH – Plant PTM Viewer to explore the data

https://www.psb.ugent.be/webtools/ptm-viewer/

Relevant candidates in wheat

Validation in wheat

Mode-of-action in Arabidopsis

EXAMPLE 1 – Difference in protein level dictates stress tolerance

High temperature impacts wheat seedling growth

18°C 24°C 30°C

18°C 24°C 30°C 36°C

Zhu et al (unpublished)

Focus on early and temperature-specific signalling

HEAT SHOCK PROTEINs are transcriptionally rapidly up-regulated

Vu, Zhu et al (2018) J Exp Bot 69(19):4609-462

Vu, Zhu et al (2018) J Exp Bot 69(19):4609-462

Vu, Zhu et al (2018) J Exp Bot 69(19):4609-462

EXAMPLE 3 – Capturing the early temperature-responsive wheat phosphoproteome

Differential phosphosites after 60 min exposure to high temperature

Vu, Zhu et al (2018) J Exp Bot 69:4609-4624; Zhu et al (unpublished results)

Wheat phosphoproteome pinpoints TARGETs OF TEMPERATURE

TOT3 phosphostatus is regulated in wheat at high temperature

TOT3 – S394

TOT3 plays a role in temperature-responsive seedling growth

Vu et al (unpublished)

EXAMPLE 4 – Capturing markers for temperature tolerance and sensitivity

High temperature impacts wheat seedling growth

Fonseca de Lima, Zhu et al (unpublished)

High temperature impacts wheat seedling growth

Wheat - 2 week old seedlings

	Tolerant	Sensitive
	(Log2FC)	(Log2FC)
TaTOT100	-2,53	4,83
TaTOT101	-1,94	2,62
TaTOT102	-1,49	6,50
TaTOT103	1,82	-4,30

CONCLUSION

CONCLUSION

WHEAT (PHOSPHO)PROTEOME

CONCLUSION

WHEAT (PHOSPHO)PROTEOME

"Farming looks mighty easy when your plow is a pencil and you're a thousand miles from the corn field." <i>wheat

Dwight D. Eisenhower

WHO DID THE WORK?

<u>Group alumni</u> L. Joos I. Verstraeten N. Nikonorova

Collaborators

K. Gevaert C. Uauy IWGSC N. Collins M. Xin T. Saychenko

www.psb.ugent.be/functional-phosphoproteomics and ive.desmet@psb.vib-ugent.be @FuncyPhosphoLab / @IveDeSmet1978
www.facebook.com/FuncyPhosphoLab/

Ready for the next step in your research career? APPLY FOR A POSTDOCTORAL FELLOWSHIP TO JOIN VIB

WORLD-CLA

AND CORE FACILITIES

Categy, neuroscience, plant biology, proteomes, structural biology, systems biology, bioinformatics, cardiovaccular, development, microbiology, inflammation and immunity

27% success rate in 2018 call for MSCA Compared to overall rate of 12%

EXTENSIVE

Leadership, technologies, others, bioinformatics,

sarrer gutdance, writing, science communication, we