BIONANO GENOME MAP OF BREAD WHEAT 7DS ARM SUPPORTS SEQUENCE ASSEMBLY AND ANALYSIS

Hana Šimková Institute of Experimental Botany Olomouc Czech Republic

PAG XXIV, IWGSC workshop, San Diego, 9th January 2016

OUTLINE

- Why BioNano mapping
- Why chromosomal approach

QUALITY OF GENOME SEQUENCES

- The accepted genome quality has been decreasing
 - The consequence of a massive use of next generation shotgun sequencing
- The bottleneck:
 - NOT the sequencing capacity
 - BUT the ability to assemble many short reads with prevalence of repeated DNA (... and polyploidy)
- Promising:
 - long read technologies (PacBio, Oxford Nanopore, ...)

 BUT read lengths exceeding 200 kb will be needed to unpick long arrays of repeats and segmental duplications

http://olomouc.ueb.cas.cz/

Marx, Nature 501:263, 2013 Shangguan et al., PLOS One 8:e69890, 2013 Pan et al., Plant J. 77 (5): 795-805, 2014 Chaisson et al., Nature Rev. Genet. 16: 627-640, 2015

HOW TO MAKE NEXT GENERATION SEQUENCES BETTER?

Use next generation mapping!

- Single-molecule mapping of genomic DNA hundreds to thousands kilobases in size
- Creates sequence-motif maps, which provide long-range template for ordering genomic sequences
- Visualisation of reality

GENOME MAPPING ON NANOCHANEL ARRAYS

JIONANO

CHROMOSOME MAPPING ON NANOCHANNEL ARRAYS

- genome by flow sorting
- http://olomouc.ueb.cas.cz/

- Pilot study on wheat 7DS chromosome arm (381 Mb, 2.25% wheat genome)
 - Purified as telocentric chromosome by flow cytometric sorting

- In silico analysis (7DS CSS sequence) for chromosome mapping
 - Nt.BspQI ~13 sites/100kb (GCTCTTC)
 Nb.BbvCI ~7 sites/100kb (GCTCAGC)

DE NOVO ASSEMBLY OF 7DS BIONANO MAP

1.6 million flow-sorted 7DS arms of 'Chinese Spring'

Length threshold	Total coverage	Molecule N50
150kb	180x	344kb

- A total of **371 genome maps** were *de novo* assembled
- Total assembly length 350 Mb (92% of estimated 7DS size)
- Average map size 0.9 Mb
- Map N50 is 1.3 Mb

CO-ASSEMBLY OF 7DS AND 7AS DATA

			Theoretical	Co-assembly
	7AS	7DS	7AS + 7DS	(% vs. theoretical)
Molecule Coverage	194x	206x		
Molecule N50 (kb)	206	219		
No. Genome Maps	783	468	1251	2043 (163%)
Avg. Genome Map	571			
Length (kb)	571	765	0,643	0,488 (76%)
Genome Map N50 (kb)	1,553	1,355	1,454	1,053 (70%)

- More fragmented genome maps
- Several percentage of chimeric maps merged through shared repeats

7DS PHYSICAL MAP AND SEQUENCE

Physical map

- Automatic assembly using FPC
- Manual end-merging of contigs based on integration of Aegilops tauschii whole-genome map with the map of the bread wheat 7DS chromosome arm
- Verification of the assembly using LTC

No. contigs > 2 BAC clones	904
No. contigs > 5 clones	652
Assembly length	360 Mb
7DS arm coverage	95 %
Contig N50	548 kb
No. MTP BAC clones	4,608

Sequence

- Sequencing pools of four non-overlapping MTP BAC clones
- Illumina pair-end sequencing 550bp fragment size, 100 bp read length, coverage >500x \rightarrow Sassy
- Deconvolution through BAC end sequences
- Scaffolding through mate-pair data obtained from MTP-plate pools (384 clones/pool) → SSPACE

Contigs per BAC	1 - 17
Average No. contigs/BAC	1.9
Median No. contigs/BAC	1.5
Average scaffold size	56 kb
Scaffold N50	116 kb
% N in assembly	2.9 %

COMBINING BIONANO MAP WITH THE 7DS SEQUENCE

By aligning BAC clone sequences to the BioNano genome map through IrysView sofware

BIONANO MAP FOR PHYSICAL MAP IMPROVEMENT

Enables scaffolding of BAC contigs

- Reduces demand on number of markers
- Integrates multiple genetic maps
- Useful in non-recombing regions
- Sizes gaps
- Identifies and corrects mis-assemblies

BIONANO MAP FOR SEQUENCE IMPROVEMENT

□ Identification of scaffold mis-assemblies

Due to mis-orientation contigs in a scaffold

Due to mis-joining of contigs within a sequencing pool or cross-contamination

LARGE ARRAY OF TANDEM REPEATS IN THE 7DS

- ~1 Mb-long array of tandem repeats was identified in the genome map No. 350 (longest single molecule ~ 800 kb)
- Unit size ~9.3 kb

LARGE ARRAYS OF TANDEM REPEATS

+ several other maps with identical/similar motif

No high-confidence match in 7DS BAC sequence assemblies

LARGE ARRAYS OF TANDEM REPEATS

rDNA locus?

- Corresponds to the size of wheat 25S-18S rDNA unit: ~9 kb (Gerlach and Bedbrook, 1979)
- Major loci on 1B, 6B and 5D

STUDYING LOCAL STRUCTURAL VARIATION

- Project on cloning a Russian wheat aphid resistance gene Dn2401
 Device of 0.81 attractioned by five BAC closes (250 kb)
- Region of 0.81 cM spanned by five BAC clones (~350 kb)

BAC clones sequenced, candidate genes identified

 Sequence available for cv. Chinese Spring (susceptible), while the gene has been mapped in a resistant line CI2401

Do we miss anything when analyzing the CS sequence?

STUDYING LOCAL STRUCTURAL VARIATION

 Construction of BioNano map from 7DS arm of CI2401 (7DS ditelosomic line newly created from CI2401)

7DS	CS	CI2401
Molecule Coverage	180x	206x
Molecule N50 (kb)	344	219
Genome Map N50 (Mb)	1.3	1.35

STUDYING LOCAL STRUCTURAL VARIATION

STUDYING STRUCTURAL VARIATION ON CHROMOSOME ARM LEVEL

	No. cases	Total length (% CS arm length)
Deletions in CI2401 vs. CS	28	1.2 Mbp (0.31%)
Insertions in CI2401 vs. CS	109	1.7 Mbp (0.44%)
Variable map ends	73	22.8 Mbp (6%)

Significant reduction of the long tandem repeat array

CONCLUSIONS

The BioNano genome map is useful for

- Validating and improving physical map and sequence (scaffolding contigs, sizing gaps, identification and correction of misassemblies)
- Identification of large tandem repeats intractable to current sequencing technologies
- Structural variation detection (insertions, deletions, translocations, copy number variations)

Chromosomal approach

Enables higher-quality genome map assembly

- Resolves repeats on chromosomal level
- Focused approach to studying structural variation

ACKNOWLEDGEMENTS

Helena Staňková Zuzana Tulpová Jan Vrána Marie Kubaláková David Kopecký Jaroslav Doležel

Alex Hastie Saki Chan

Colorado State University

Nora Lapitan

David Edwards Paul Visendi Jacqueline Batley Satomi Hayashi

UCRIVERSIDE

Adam Lukaszewski

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

Bikram Gill

Bernd Friebe