Exome sequencing of mutant populations opens a new era for wheat functional genetics

J. Dubcovsky UC Davis, CA

Acknowledgements

Tetraploid Team @ UCDavis

K.V. Krasileva, H. Vasquez-Gross, F. Paraiso, X. Wang, T. Howell, J. Dubcovsky

Medical Institute

Hexaploid Team @ John Innes Centre & The Genome Analysis Centre (TGAC) P. Bailey, S. Ayling, A. Phillips (Rothamsted). UK leader: C. Uauy

Funding Sources

- Howard Hughes Medical Institute
- Gordon Betty Moore Foundation
- USDA-NIFA Triticeae-CAP grant
- UK BBSRC Grant BB/J003557/1

Funded sets of 100 Kronos mutant lines.

- USDA-ARS Cereal Disease Laboratory, St. Paul, MN
- Washington State University, Pullman WA
- Crop Development Center, University of Saskatchewan, Saskatoon, Canada
- Shandong Agricultural University, Tai'an, Shandong, China.

United States Department of Agriculture National Institute of Food and Agriculture

Wheat exome capture

• Wheat genome had a large expansion due to transposable elements (TE): high-copy no., ~sequence → difficult assembly

- *T. t. ssp. durum* • Genomes AABB
- Genomes AABB
 13,000 Mb
- 98% repetitive

• Exome Capture Collaboration with NimbleGen

- NCBI nr wheat genes
- *T. aestivum* full length cDNAs
- 4 *T. aestivum* transcriptomes
- Homologs to barley genes
- Annotated genes from our labs

Merged initial CD-HIT

Add non-redundant by CD-HIT2D t Final CD-HIT EST 99% cutoff

Total 82,511 genes

Genome Biology 2013, 14:R66

Exon capture re-sequencing of wheat TILLING populations

Genomic DNA Sheared DNA Barcoded library			→ → -			
Exome capture			•			
Illumina sequencing	ATGT TACT CGTG	ATGC TGTT AGTG	↓ ATAC TGCT CGTG	ATGC TGCT TATG	ATGC TGCT CGTA	
Mutation identification	ATG T T A CT CGTG	ATGC TG T T A GTG	ATAC TGCT CGTG	ATGC TGCT T GTG	ATGC TGCT CGT A	

MAPS pipeline to identify mutations

- Mapping by BWA with Illumina PE 200. Ensembl Reference + unmapped assembled contigs
- Polymorphism detection MAPS pipeline from Luca Comai Lab (we adapted it to polyploid wheat)
 - <u>http://comailab.genomecenter.ucdavis.edu/index.php/MAPS</u>
 - Published in *Plant Cell* 2014, 26:1382–1397

Noise:	Reference	CAGTGTGCCCACCTGTGGCTTTTGACTAATGTGTACAGCAACGTA
Varietal SNP Paralog/Homeolog SNP Sequencing/PCR error Off target sequences	Mutant 1	CAG <mark>G</mark> GTGCC <u>G</u> ACCTGTGACTTTTGACAAATGTGTACAGCAAGGTA CAGTGTGCCGACCTGTGACTTTTGACAAATGTGTACAGCAACGTA CAGTCTGCCGACTTGTGGCTTTTGACAAATGTGTATAGCAACGTA CAGTCTGCCGACTTGTGGCTTTTGACAAATGTGTACAGCAACGTA
Signal: EMS Mutation	Mutant 2	CAGTGTGCCGACCTGTGACTTTTGACAAATGTGTACAGCAACGTA CAGTGTGCCGACCTGTGACTTTTGACAAAAGTGTACAGCAACGTA CAGTCTGCCGACCTGTGGCTTTTGACAAATGTATACAGTAACGTA CAGTCTGCCGACCTGTGGCTTTTGACAAATGTGTACAGCAACGTA
	Mutant 3	CAGTGTGCCGACCTGTGACTTTTGACAAATGTGTACAGCAAGGTA CAGTCTGCCGACCTGTGGCTTTTAACAAATGTGTACAGCAACGTA CAGTCTGCCGACCTATGGCTTTTAACAAATGTGTACAGCAACGTA CAGTCTGCCGACCTGTGGCTTTTAACAAATGTGTACAGCAACGTA

Characterization of mutations

Tetraploid wheat TILLING status

614 Online with Mutations	942	1250	1547
	Mapped	Sequenced	Captured

- Target **1,547** lines
- Target 3 M mutations

Hexaploid Wheat TILLING status

Mapped Sequenced Captured	342	573	1245	291 Captures
	Mapped	Sequenced	Captured	Pending

Target **1536** lines **Target 3 M** mutations

Wheat TILLING populations

Tetraploid wheat cultivar KRONOS: USA, UC Davis. Contact Jorge Dubcovsky

Hexaploid wheat cultivar CADENZA: UK, John Innes Centre/TGAC. *Contact Cristobal Uauy.*

Seeds from the mutants will be available at cost

Generation of new allelic variants

• Probability of truncations and deleterious missense mutations

Tetraploid wheat

- 1547 lines
- \sim 37 mutations/kb in all lines

Hexaploid wheat

1,536 hexaploid lines
~42 mutations/kb in all lines

- The current mutation density is expected to produce amino acid mutations in almost every gene and truncations in ~80% of the targeted gene. Truncations are preferable in functional studies.
- TILLING has changed the paradigm of what can be done in functional genomics in wheat!
 - 1. Validation candidate genes
 - 2. Pathway engineering
 - 3. Pathway dissection

1. Use of TILLING mutants to validate candidate genes

2. Engineering the starch biosynthetic pathway

Knock out all SbeII

- Found mutations in *SbeIIa* & *SbeIIb* genes
- Backcrossed 2 generations
- Combined the 4 mutations
- Introgressed into commercial varieties (6 BC)

Crop Science. 2012 52:1754 J. Plant Reg.

2014 in press

Effect of *sbeIIa* + *sbeIIb* quadruple mutant on amylose and RS

3.- Use of TILLING mutants to dissect complex pathways

- All mutants are in the same genetic background "Kronos".
 - Winter-spring
 - Photoperiod sensitiveinsensitive
- Combination of different mutants to study epistatic interactions.
- RNASeq studies of mutant lines to identify downstream genes (*phyC* and *phyB null* completed)

We have an exciting future of wheat research ahead of us!

Thank you