Genetic anchoring of the chromosome shotgun assembly of bread wheat by population sequencing

Martin Mascher

IPK Gatersleben

EUCARPIA ITMI meeting

June 29, 2014

Whole genome or chromosome shotgun assemblies are a fast and easy way to generate genomic resources.

- Whole genome or chromosome shotgun assemblies are a fast and easy way to generate genomic resources.
- Shotgun assemblies are half-solved jigsaw puzzles.

- Whole genome or chromosome shotgun assemblies are a fast and easy way to generate genomic resources.
- ► Shotgun assemblies are half-solved jigsaw puzzles.
- Genetic mapping to assign assembly contigs to chromosomal locations

- Whole genome or chromosome shotgun assemblies are a fast and easy way to generate genomic resources.
- Shotgun assemblies are half-solved jigsaw puzzles.
- Genetic mapping to assign assembly contigs to chromosomal locations
- POPSEQ in barley and wheat

 Only 25 % of the barley WGS assembly could be positioned in the physical framework.

no. of contigs	2.7 million
cumulative length	1.8 Gb
mean contig length	700 bp
no. contigs $> 1 \text{kb}$	376,261
${\sf length} \ {\sf of} \ {\sf contigs} > 1 {\sf kb}$	1.1 Gb
N50	1,425 bp

- Only 25 % of the barley WGS assembly could be positioned in the physical framework.
- The number of genetic markers limits anchoring efficiency.

no. of contigs	2.7 million
cumulative length	1.8 Gb
mean contig length	700 bp
no. contigs $> 1 kb$	376,261
length of contigs $> 1 \mathrm{kb}$	1.1 Gb
N50	1,425 bp

- Only 25 % of the barley WGS assembly could be positioned in the physical framework.
- The number of genetic markers limits anchoring efficiency.
- Next-generation sequencing has been used in rice and fruit fly for genotyping. Marker order was derived from a high quality reference genome.

no. of contigs	2.7 million
cumulative length	1.8 Gb
mean contig length	700 bp
no. contigs $> 1 kb$	376,261
${\sf length} ~{\sf of} ~{\sf contigs} > 1 {\sf kb}$	1.1 Gb
N50	1,425 bp

- Only 25 % of the barley WGS assembly could be positioned in the physical framework.
- The number of genetic markers limits anchoring efficiency.
- Next-generation sequencing has been used in rice and fruit fly for genotyping. Marker order was derived from a high quality reference genome.
- Idea: use whole genome sequencing for genotyping to establish marker order from sequencing data

 POPSEQ was done with one RIL (Morex × Barke) and one DH population (OWB).

	MxB + OWB WGS	IBSC
No. of SNPs used for anchoring	11,229,709	498,165
Framework map	$iSelect/OWB\ GBS$	iSelect
No. of anchored contigs	747,077	138,443
Size of anchored contigs	1,222 Mb (65%)	410 Mb (21%)
Median length of anchored contigs	891 bp	1,775 bp
No. of anchored HC genes	20,932 (80%)	14,923 (57%)

 Three times more anchored sequence compared to the physical and genetic framework

Chromosome shotgun sequencing (CSS) in wheat

Chromosome shotgun sequencing (CSS) in wheat

- IWGSC has created shotgun sequence assemblies of all 40 wheat chromosome arms + 3B
- Single chromosome arms were isolated from cytogenetic stocks using flow cytometry

Chromosome shotgun sequencing (CSS) in wheat

- IWGSC has created shotgun sequence assemblies of all 40 wheat chromosome arms + 3B
- Single chromosome arms were isolated from cytogenetic stocks using flow cytometry
- DNA libraries of sorted chromosomes were sequenced to high coverage on the HiSeq2000 and assembled by TGAC
- ▶ Total assembly size: 10.1 Gb

Sequencing the Synthetic W7984 \times Opata M85 population

- POPSEQ anchoring of the CSS assembly by sequencing the SynOp doubled haploid population
- Synthetic wheat: artificial hybridization of a tetraploid durum wheat with Ae. tauschii.

Sequencing the Synthetic W7984 \times Opata M85 population

- POPSEQ anchoring of the CSS assembly by sequencing the SynOp doubled haploid population
- Synthetic wheat: artificial hybridization of a tetraploid durum wheat with Ae. tauschii.
- ► JGI sequenced 90 doubled haploid lines to 1x coverage.
- Read mapping and SNP calling were done with BWA and SAMTools.

POPSEQ: putting together the pieces

 Annotated sequence contigs of the wheat CSS assembly (IWGSC)

POPSEQ: putting together the pieces

- Annotated sequence contigs of the wheat CSS assembly (IWGSC)
- A high-density genetic map was constructed through GBS of the Synthetic × Opata population (Poland, 2012).

RIL# 1 2 3 4 5 6 7 8 9 10

SNP on WGS contig A G A A G G A A G G

 WGS SNPs and framework markers are represented as binary genotype vectors.

- WGS SNPs and framework markers are represented as binary genotype vectors.
- The nearest neighbor(s) (Hamming distance) are searched for in the set of framework markers whose genetic positions are known.

- WGS SNPs and framework markers are represented as binary genotype vectors.
- The nearest neighbor(s) (Hamming distance) are searched for in the set of framework markers whose genetic positions are known.

- WGS SNPs and framework markers are represented as binary genotype vectors.
- The nearest neighbor(s) (Hamming distance) are searched for in the set of framework markers whose genetic positions are known.
- Consistency criteria for multiple nearest neighbors: framework are required to be within 5 cM.

	wheat	barley
population	SynOp DH	OWB DH
assembly size	10.1 Gb (63 %)	1.8 Gb (38 %)
N50	2,308 bp	1,425 bp
size in contigs $\geq 1~{ m kb}$	7.0 Gb	1.1Gb
size in contigs \geq 5 kb	3.1 Gb	382 Mb
anchored length	4.4 Gb	1.0 Gb
anchored length $\geq 1~\text{kb}$	4.2 Gb	811 Mb
anchored length \geq 5 kb	2.3 Gb	279 Mb

	wheat	barley
population	SynOp DH	OWB DH
assembly size	10.1 Gb (63 %)	1.8 Gb (38 %)
N50	2,308 bp	1,425 bp
size in contigs $\geq 1~{ m kb}$	7.0 Gb	1.1Gb
size in contigs \geq 5 kb	3.1 Gb	382 Mb
anchored length	4.4 Gb	1.0 Gb
anchored length $\geq 1~{ m kb}$	4.2 Gb	811 Mb
anchored length \geq 5 kb	2.3 Gb	279 Mb

▶ 99.4 % agreement between POPSEQ and flow sorting

Collinearity with the GenomeZipper

- 99.8 % agreement of chromsome assignments
- 85 % correlation within linkage groups
- 75,183 genes anchored by POPSEQ and/or GenomeZipper

Collinearity with barley

 93 % agreement of group assignments; 91 % collinearity within groups

Challenges and limitations of POPSEQ

genetic to physical distance in barley

relative physical position along the chromosome (%)

Challenges and limitations of POPSEQ

 Algorithms: assembly quality (contig size and number)

genetic to physical distance in barley

Challenges and limitations of POPSEQ

- Biology: POPSEQ relies on recombination.
- Algorithms: assembly quality (contig size and number)
- Technology/money: sequencing costs limit sequencing depth, population size and mapping resolution.

genetic to physical distance in barley

Acknowledgements

- Nils Stein
- Uwe Scholz
- ► IWGSC
- Dan Rokhsar
- Jarrod Chapman
- Kerrie Barry
- Robbie Waugh
- Jesse Poland
- Gary Muehlbauer

GEFÖRDERT VOM

Bundesministerium und Forschung

KANSAS STATE UNIVERSITY

Mapping-by-sequencing

Identification of causal genes by sequencing phenotypic pools

Schneeberger et al., TIPS 2010

Mapping-by-sequencing

- Identification of causal genes by sequencing phenotypic pools
- Requires an ordered reference sequence

Schneeberger et al., TIPS 2010

Mapping-by-sequencing

 Mapping-by-sequencing of the sixed-row spike gene (vrs1) in OWB

genetic position

POPSEQ anchoring of the barley physical map

	BAC contigs	sequenced clones
POPseq data	$M \times B + OWB$	M x B + O W B
# all contigs	9,265	6,278
# with WGS contigs	5,872	6,243
# with anc. WGS contigs	5,720	6,189
# anchored	5,193	5,591
length	3.95 Gb	703 Mb

 POPSEQ can assign additional physical contigs to chromosomes to assist MTP sequencing