

The Whole Genome Profiling (WGP [™])

for physical mapping of wheat chromosome 6A

Naser Poursarebani, Thomas Nussbaumer, Hana Šimková, Jan Šafář, Hanneke Witsenboer, Jan van Oeveren, IWGSC, Jaroslav Dolezel, Klaus Mayer, Nils Stein,

Thorsten Schnurbusch

Zeev Frenkel, Abraham Korol

Bundesministerium für Bildung und Forschung

Outline:

Introduction and methodology

Why 6A chromosome?

BAC-based Physical map; Basic principles and the new technology

The strategies for 6A: WGP technology; FPC & LTC assembly tools

Results:

Physical map assemblies

Physical map anchoring

Comparison of the assemblies developed by the two tools

Recombination estimation and physical map gene decoration

Synteny with other grass genomes

6A Browser

Summary

Why 6A chromosome?

Selected Traits associated with Chromosome 6A

BAC-based physical map

Basic principles and the new technology

An anchored physical map: A model of a "Reconstructed Chromosome"

Chromosome Sorting by Flow Cytometry

(Wheat Genome; Hexaploid, ~ 17Gb)

Fingerprinting strategies

Assembly tools and their parameters

Automated Assembly (Single to end & end to end Merging, DQing)

The strategies for 6A:

WGP technology + FPC & LTC assembly tools

Results

Physical map assembly

The BAC library resources utilized

The DNA obtained by flow cytometry of ditelosomic wheat lines

(Dr. Jaroslav Dolezel; Czech Republic)

Wheat chromosome 6A arm-sorted BAC libraries						
No of BAC clone	Long Arm (6AL)	Short Arm (6AS)	Library coverage			
Estimated size of chromosome	369 Mbp	336 Mbp	-			
Complete BAC library ⁽¹⁾	49.152	55.296	~16x			
for WGP™	24.576	22.656	~8x			
as WGP™ Output	18,660	19,289	~7x			
WGP [™] Output used for BAC assembly ⁽²⁾	17,309	18,820	~5x (6AL) & ~7x (6AS)			

Of WGP-based output

General WGF	parameters	and sequence	data processing
--------------------	-------------------	--------------	-----------------

Chromosome arm	Long arm	Short arm
No of tagged BACs	18,660	19,289
% tagged BACs	75,9%	85%
WGP tag length	50 nt	50 nt
average No of WGP tags/ BAC	27	29.2

Distribution of #tags/BAC

Entered to the assembly (Clones with 6 to 68 tag)

Short Arm BACs: 18,820, 7x

Long Arm BACS: 17,309, 5 x

Wheat 6A physical map assembly via FPC

Wheat 6A physical map assembly via LTC

Chromosome 6A arm separated assemblies via LTC

		Short arm	Long arm
1e-10	No of contig	1217	1113
1e-7 ^{1e-8} 1e-6 1e-5	No of singleton	3136	2581
	Average Kb	428	488
	L50 Kb	1090	945

Assembly step

in silico genetic anchoring of the 6A physical map

Average amount of sequence information per contig: 2144 bp \rightarrow 11067 bp

Provided the basis for sequence homology search against genetic markers with known sequences!

in silico genetic anchoring of the 6A physical map

sequence homology searches against genetic marker with known sequences

Wheat and barley genetic maps with markers of known sequences

Wheat map developed by Poland et al., 2012; Wheat map developed by Cavanagh et al., 2013; Barley genomic resources, (IBSC, 2012; Mascher et al., 2013)

Overall, 831 Mb (or 79%) of 6A physical contigs could be genetically anchored!

Comparison of FPC against LTC

Different FPC assemblies obtained at different stringencies

<u>Against</u>

Comparison of FPC against LTC (LTC>=2FPC, 1e-11)

Cases of conflicts (LTC>=2 FPC) for which marker data allowed further

confirmation of the contigs structure

Chromosome arm	Short arm	Long arm
No of conflicts	72	143
No of conflicts for which informative	22	26
markers (1) were available	17	20
Engaged FPC contig (s) is chimeric	1/	20
Engaged LTC contig is chimeric	4	4
The LTC contig corresponds to the ends of the respective FPC contigs $^{(2)}$	1	2

using WGP data, LTC showed a better performance than FPC!₁₉

Estimated recombination frequency along wheat chromosome 6A

The underlying genetic map used for 6A genetic anchoring was divided into 26 bins, each 10 cM in size.

Centromeric area of the chromosome was suppressed for recombination!

Estimated gene distribution along wheat chromosome 6A (of the 5024 genes of 6A, 3359 genes mapped to the anchored physical map)

Gene frequency per physical unit was increased from centromere towards telomeres

Synteny of wheat 6A physical map with other grass genomes

The wheat chromosome 6A physical map re-confirmed the known syntenic relations to the other grass genomes

Wheat chromosome 6A physical map DataBase!

http://seacow.helmholtz-muenchen.de/cgi-bin/gb2/gbrowse/Wheat_PhysMap_6A

23

Summary:

✤ WGP technology and LTC revealed a highly robust physical map of wheat chromosome 6A.

✤ In silico based anchoring delivered 79% of the physical map integrated to the corresponding genetic maps.

✤ Recombination rate and the gene distribution was estimated that confirmed the general pattern in large grass genomes.

✤ We were the last chromosome that started, however, we are the sixth to be finalized and reported so far!

This physical map will serve as a framework for sequencing of this wheat chromosome

✤ And is of immediate use for map-based isolation of agronomically important genes/QTL located on this chromosome.

Thank you so much for your

kind attention!