Excerpts from a Seminar at Bayer CropScience February 2015

Kellye Eversole
IWGSC Executive Director

Seminar
Ghent, Belgium
12 February 2015
Update on the International Wheat Genome Sequencing Consortium (IWGSC): Strategies and Resources

Kellye Eversole
IWGSC Executive Director

Seminar
Ghent, Belgium
12 February 2015
IWGSC
international wheat genome sequencing consortium

10

2005 - 2015
2005

2 sponsors
3 institutes

5 members
3 countries
22 sponsors
1,481 members and data users
More than 270 institutes
64 countries
Goal
• Lay a foundation to accelerate wheat improvement
• Increase profitability throughout the industry

Vision
• High quality annotated genome sequence, comparable to rice genome sequence
• Physical map-based, integrated and ordered sequence

Diagram:
- Phenotypic selection
- Marker-assisted selection
- Genomics technology assisted selection
- Germplasm
- Products
Challenges for the world’s food crops

Sustainably provide sufficient quantity of high quality food

- Decreasing annual yield growths and agricultural productivity
- More frequent periods of extreme weather patterns
- A general increase in global temperatures
Crop improvement is complex

- **Yield potential and yield stability**
 - Photosynthesis efficiency
 - Harvest Index
 - Reduced inputs (fertilizers, pesticides..)

- **Adaptation to climate change**
 - Avoidance
 - Tolerance (Drought, heat, cold..)
 - Post stress recovery...

- **Durable resistance to biotic stress**
 - Usual suspects (virus, fungi)
 - New pests and diseases
 - Invasive species

- **Quality of grain and co-products**
 - Grain protein content
 - Starch, straw
 - Food safety - Allergenicity-mycotoxin contamination....
How to produce a useful sequence?
Key Considerations

• A genome sequence is only a tool

• What kind of sequence?

• For whom and for what purposes?
 – Comparative genomics
 – Markers
 – Gene cloning
 – Development of new varieties
 – Long-term breeding pipelines

• Goal - Optimize the cost/quality ratio to deliver a useful tool
How to produce a useful sequence?

1- Sequence what grows in the fields! -> bread wheat

2- A sequence linked to the genetic maps and phenotypes
Faster and cheaper methods to tackle the wheat genome

http://flxlexblog.wordpress.com/2012/12/03/developments-in-next-generation-sequencing-a-visualisation/

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI
www.genome.gov/sequencingcosts.
Which Way for Wheat...

We offer three kinds of service:
GOOD - CHEAP - FAST
You can pick any two
GOOD service CHEAP won’t be FAST
GOOD service FAST won’t be CHEAP
FAST service CHEAP won’t be GOOD
Two possible approaches

BAC by BAC

Whole Genome Shotgun
BAC by BAC (physical map) √

TEs

Genes 500 kb

Whole genome shotgun
The bread wheat genome is......a challenge

- **Allohexaploid**
- **Large: 17 Gb**

- 80-90% of TEs and repeats
- > 50% of non recombinogenic regions
Managing the 17 Gb, Hexaploid Genome

Dissection of the genome into single chromosomes (arms)

Doležel et al., Chromosome Res. 15: 51, 2007

- Chromosomes: 605 - 995 Mbp
 (3.6 – 5.9% of the genome)
- Chromosome arms: 225 - 585 Mbp
 (1.3 – 3.4% of the genome)

Chromosome genomics
 ➢ Chromosome specific BAC libraries and sequencing
Roadmap to the Wheat Genome Sequence

Survey sequencing of individual chromosomes

Physical mapping of individual chromosomes

MTP sequencing

A reference sequence anchored to the genetic and phenotypic maps
1. BAC library construction

2. BAC fingerprinting (HICF/WGP)

3. Contig assembly by FPC/LTC

4. MTP sequencing /Scaffold assembly

5. Pseudomolecule construction (meiotic/LD/RH mapping)

6. Automated and curated annotation
The Annotated Reference Sequence of the Bread Wheat Genome

Pseudomolecules (1 of 21 completed)

Chromosome Shotgun Sequences and marker alignment (completed)

Physical Maps (16 of 21 completed; 5 almost finished)
Physical maps (of varying quality) have been constructed for all chromosomes. 5 maps are being improved.

Status reports from IWGSC website
IWGSC Chromosome Shotgun Sequencing Initiative

Amplified DNA-sorted individual chromosomes

~50X Illumina sequence

Chromosome arm sequence assemblies

Gene modeling, virtual ordering (GZ), annotation, functional, structural analyses

Composition and Evolution of the 21 Bread Wheat Chromosomes

A, S, D, & AB genomes (7)

>30X Illumina sequence

Read/assembly alignment to chromosome arms
Slicing the wheat genome

Sequencing illuminates bread wheat evolution and breeding potential p. 285
IWGSC Chromosome Survey Sequence Data

- **Sequence assemblies for 40 chromosome arms + chromosome 3B**
 - Total length **10.2 Gb**
 - 128Mb (1DS) – 639Mb (3B) assembled sequence per chromosome
 - N50 contig length after repeat masking = **6.1kb (1.7kb-8.9kb)**

- **Annotation (RNASeq, FLcDNA, grass genomes):** **124,201 allocated to chromosomes**

![Pie chart and bar graph showing distribution of sequence assemblies and high-confidence genes across chromosome arms.](image-url)
• Almost full wheat gene complement identified and allocated to chromosome arms
• On average, 53% of genes virtually ordered along chromosomes
• High level of inter- and intrachromosomomal duplication
• Over 3.5 M markers mapped to contigs (1.3M wheat markers + 2.3M SNPs) - SSR, EST, DArT, SNP (90k) markers...
• 13.2 million SNPs from POPSeq aligned to contigs
Sequencing the hexaploid wheat chromosome 3B

Roche GSFLX sequencing of BAC pools

The chromosome 3B pseudomolecule

Illumina sequencing of sorted chromosome

Sanger sequencing of BESs

Genotyping data
1,100 lines x 3,000 SNPs

RNAseq on 15 conditions

Feuillet, Choulet, & Paux
The 3B reference sequence: an enabling tool to discover, understand, and apply

- Homoeologous gene expression, coexpression islands
- TE organisation and impact on structure and expression
- Structural variants (CNV, PAV…)
- SNPs in genes and TEs (ISBP)
- Duplications and collinearity
- Map-based cloning
- Recombination, LD analysis
- Epigenetic landscape

C Feuillet, 2013
3B Reference is facilitating map-based cloning

40 genes and QTL mapped on 3B

→ 4722 markers on 3B consensus map, 3102 in 964 SC (679 Mb = 82% of the sequence)

→ 13 map-based cloning projects

- Disease resistance genes (Sr, Lr, Yr, Stb...)
- Solid stem (saw fly)
- Yield
- Drought tolerance
- Boron transporter
- Flowering time
- NUE
- Chromosome pairing...

C Feuillet, 2013
A useful genome sequence: Wheat 3B

- Unlimited markers
- Efficient gene cloning
- Pre-breeding
- Precision breeding
- Shortens time to market
- Improves seed value capture
IWGSC Resources

• All resources accessible at URGI, Versailles

 http://wheat-urgi.versailles.inra.fr/Seq-Repository/

• IWGSC CSS Raw sequence reads in the SRA
• IWGSC CSS assemblies available at URGI and EBI
• IWGSC CSS assemblies & gene models integrated into EnsemblPlants

 http://plants.ensembl.org/Triticum_aestivum
Perspectives on Sequencing Wheat

- 1994 to 1998:
 - It will cost $1billion to sequence maize
 - Arabidopsis can answer all questions, much more cheaply (Only $110 million to sequence)
 - We only need ESTs for economically important crops
 - If you have full length cDNAs, you will have everything you want

- 2001 to 2003:
 - Okay, so Arabidopsis is not a cereal, rice is the answer
 - Since it is not possible, we will focus money on coming up with a new solution
 - $500 million later... Eureka! We can focus on sequencing only the genes

- 2003 to 2008:
 - $30 million for sequencing maize

- Today ...
 - Breeders and biologists alike agree having the genes are not enough
 - But, it’s too late, you have your sequence

- 1994 to 2004:
 - Wheat ESTs and a physical map of the D-genome progenitor is all you need

- 2004 to 2008:
 - It is not possible to sequence wheat & not possible to sort chromosomes
 - It will cost $1billion to sequence wheat
 - We only need ESTs, a handful of cDNAs, and the D-genome sequence

- 2008 to 2010
 - Okay, so you can do chromosome based physical maps.... But
 - Brachypodium sequence is the answer!
 - Whole genome based on other crops is only way to go, but we need to keep spending money on in-silico approaches to figure out how to do a whole genome approach

- 2010 to today
 - You only need the genes
 - We can sequence the progenitors because we know all of them
 - 5X shotgun is good enough
 - Survey sequence is enough
Moving Towards the IWGSC Target

Whole Chromosome Shotgun

CS chromosome survey sequences (2014)

Max 53% using synteny and genetic mapping (GZ): «virtual order»

Chromosome MTP

CS 3BSEQ (2014)

94% real order

completeness of information

Gold standard
Progress towards completion of Bread Wheat Projects
Our Sponsors
Acknowledgements

• IWGSC Leadership Team:
 • Rudi Appels, Murdoch University
 • Kellye Eversole, IWGSC
 • Catherine Feuillet, (INRA)-Bayer CropScience
 • Beat Keller, University of Zurich
 • Jane Rogers, IWGSC

• 63 members of the Coordinating Committee

• Physical mapping and sequencing project leaders in 19 countries, their team members, and collaborators
For More Information:
www.wheatgenome.org

Kellye Eversole, Exec. Director
(eversole@eversoleassociates.com) +1.202.352.4210

Jane Rogers, Deputy Exec. Director
(janerogersh@gmail.com)