Evolution of recombination landscape in diverging populations of bread wheat

Danguy des Déserts A., Bouchet S., Sourdille P., Servin B. Genome Biology Evolution, 2021

Fraternité

Wheat production faces many challenges

- Demand for yield is increasing
- Reduction of intrants
- Emerging stresses
- \rightarrow Varietal improvement

Varietal improvement relies on genetic variance

Genetic diversity results from

- Mutation
- Reshuffling of alleles through meiotic recombination

p. 3

Meiotic recombination

Recombination allows to cumulate desirable alleles in new varieties

If genes are on the same chromosome

Recombination landscape (= repartition of CO along the genome)

Variability along the genome?

Recombination landscape (bread wheat)

Few CO in gene-rich regions

 \rightarrow CO can be a limiting factor of varietal improvement

What drives recombination landscape ?

Recombination landscape

Recombination landscape = many mecanisms (interference, DNA compaction...)

One approach to caracterize the determinism of rec. landscape = variability between populations

Marand et al. 2019 (The Plant Cell): Comparison of landscapes of two **rice** sub-species

80% of recombination hotspots are sub-species specific

Schwarzkopf et al. 2020 (BMC genomics): Comparison of landscapes of ten **cacao-tree** populations

55% of hotspots are **population specific**

Variability of recombination landscape between populations ?

In bread wheat ?

Gardiner et al. 2019 (Genome Biology):

- Comparison of recombination landscape in 13 NAM families (1 parent x 13 other parents)
- More similar parents have more similar recombination landscapes

- Recombination landscapes are ~ similar
- But analysed region < 4 Mb

This presentation:

Genome-wide variability of recombination landscape between diverging populations of bread wheat

Methods

Method 1: Count recombination within families: « Meiotic landscape » Ex: Chinese Spring * Renan population (Rimbert et al. 2018, PloS one)

Drawbacks:

- Small number of progeny
- Specific of parents

Method 2: linkage disequilibrium of diversity panel: « LD-based landscape »

LD patterns

Method 2: linkage disequilibrium of diversity panels: « LD-based landscape »

LD-based recombination landscape LD patterns 0.075 Li et Stephens model R2 (2003, Genetics) 1.00 0.75 0.50 (/kb) 0.05 λ ρ̂≈ρ=Κ*c 0.25 0.00 49 (d with K = f(Ne)49 5 0.025 chromosome SNP on chromosome 0 496 498 500 physical position (Mb)

Method 2: linkage disequilibrium of diversity panels: « LD-based landscape »

LD patterns

with K = f(Ne)

Advantages compared to meiotic method:

- Based on many meiosis
- Many polymorphic SNP
- Representative of the population

→ Better suited to compare recombination landscapes between populations

4 different populations of bread wheat

371 bread wheat landraces sampled worldwide (Balfourier et al. 2019, Science Advances) 130k SNP of TABW410k (Kitt et al. 2021, Zenodo)

 \rightarrow hierarchical clustering K = 4

Populations

Differenciation of populations

Do the recombination profiles of these 4 populations vary ?

For each population (WE, EE, WA, EA):

- Split the genome into ~ 600 windows of ~ 2 cM length (using CsRe)
- Run PHASE (Li et Stephens 2003, Genetics)
- = to obtain joint posterior distributions of ρ and λ

 λ : Local inflation of recombination

Results

Validation of LD-based recombination landscapes

Validation of LD-based recombination landscapes

Average correlation within genomic regions $(1AR1...7DR3) = 0.6 \pm 0.2$

Local differences between meiotic and LD-based landscapes

- Low correlation in the 7DR3 region
- Wild introgression in Renan population
- → Meiotic landscapes are sensitiv to individual specific variation

Validation of LD-based recombination landscapes

- Good correlation between LD-based and meiotic landscapes
- But higher resolution in LD-based landscapes

 \rightarrow LD-based = better suited to study and compare fine scale variation of recombination between the 4 populations

Comparison of fine scale variation of LD-based landscapes

<i>Plarger window

 $\frac{K * c_{interval}}{K * c_{window}} = \text{local inflation of recombination}$

Fine scale variation of LD-based landscapes

Localization of high recombination rates

Highly Recombining Intervals (HRIs)

0

2

4

6

Features associated with HRIs

- ~ 9k HRIs (all populations combined)
- > 70% of HRIs located in regions R1 and R3
- 80% of HRIs overlapped genes

 \rightarrow HRIs associated with open-chromatine Consistent with litterature on rec. hotspots

Conservation of HRIs across the 4 populations

- Less population specific intervals than expected
- 34% of HRIs are shared > than expected by chance

Common mechanism driving HRIs positions but differenciation

Conservation of HRIs across the 4 populations

Recombination at HRIs increased in closer populations

Variability of global recombination landscape

Variability of global recombination landscape

5

- Negative slopes for most regions
- Most slopes significantly < 0

→ Similary of recombination landscapes decreases with genetic differenciation

Conclusion

Recombination landscape evolved quickly in bread wheat

Genetic divergence associated with increased differenciation of LD patterns

- Among the highest resolutive recombination landscapes of bread wheat
- Very clear signal
- Results likely not biased by evolutionnary forces
- Also observed in other studies on plants:
 - Bread wheat (Gardiner, 2019, Genome Biology)
 - Rice (Marand et al. 2019, The Plant Cell)
 - Cacao (Schwarskops et al. 2020, BMC genomics)

+ Maize (Rodgers-Melnick et al. 2015, PNAS), Poplar (Wang et al. 2016, Genetics),

Cotton (Shen et al. 2019, The Plant journal)

 \rightarrow Evolution of CO repartition along the genome in plants

Discussion: Drivers of the evolution of CO repartition along the genome

 \rightarrow Might provide some insights about CO position determinism

How to explain such variability ?

- Environmental effects: T°C
- (Epi-)Genomic variability: DNA sequence or chromatine landscape
- Genes driving CO position (Ex: PRDM9 in few mammals)

Perspectives:

- Detect recombination hotspots
- Functionnal annotation + chromatine marks at hotspots
- GWAS in segregating families

p. 31

Thank you for your attention

Evolution of Recombination Landscapes in Diverging Populations of Bread Wheat 👌

Alice Danguy des Déserts, Sophie Bouchet, Pierre Sourdille ⊠, Bertrand Servin ⊠

Genome Biology and Evolution, Volume 13, Issue 8, August 2021, evab152, https://doi.org/10.1093/gbe/evab152

Corresponding authors Pierre Sourdille: pierre.sourdille@inrae.fr Bertrand Servin: bertrand.servin@inrae.fr

