The *Ph1/ZIP4* story:

Stabilization of wheat as a polyploid and preservation of grain number

Why is *Ph1/ZIP4* so relevant?

"The *Ph1* locus presumably appeared during wheat polyploidization stabilizing the wheat genome during meiosis"

High fertility and stability of polyploid wheat

Prevention of recombination between polyploid wheat and its wild relatives

Meiosis

Homologous recombination

- Ensure correct segregation of homologs
- Creates new combination of genes

Meiosis

Process of Synapsis

Homologs

THE BREAD WHEAT GENOME

1. Genome size

T. aestivum	: 16.000 M	bp (6n=2x=42	2)
S. cerevisiae:	12 Mbp	(2n=2x=32)	
C. elegans:	100 Mbp	(2n=2x=12)	
A. thaliana:	135 Mbp	(2n=2x=10)	
Human:	3.235 Mbp	(2n=2x=46)	

2. Highly repetitive

- > 85% is made of repetitive DNA
- Genes represent only 2% of the genome

3. Polyploid: Allohexaploid (6x = 2n = 42, AABBDD)

Wheat diploid like behaviour during meiosis

Meiotic metaphase I with 21 ring bivalents

Discovery of the Ph1 locus in wheat in 1958

Rye 2n= 14

Ernie Sears

Ralph Riley

Metaphase I

Double effect of the Ph1 locus on wheat breeding

Wheat-rye hybrid n = 28

All univalents

WT hybrid

Univalents + bivalents + multivalents

Absence of Ph1

Ph1 is a **barrier** for wild relatives **introgressions**

Use of *Ph1* locus deletion in breeding

Ph1b mutant Hexaploid wheat with a 70 Mb deletion on the long arm of chromosome 5B (Sears, 1977)

187 gene

Ph1 mutant successfully used:

- Aegilops peregrina
- Aegilops variabilis
- Ae. Geniculata (leaf and stripe rust resistance)
- Ae. Triuncialis (leaf rust resistance)
- Amblyopirum muticum
- Thinopyrum bessarabicum (salinity tolerant and disease resistance)
- Aegilops speltoides, Triticum timopheevii, Triticum urartu, Thinopyrum intermedium and Thinopyrum elongatum

Under way

Screening overlapping deletions with the Ph1 deletion phenotype

0.5 Mb region including a cluster of **Cdk-like genes**, with closest homology to CDK2 in mammals, with a block of heterochromatin from 3B inserted in the middle (Griffith et al, 2006. Nature 439, 749-752; Al-kaff et al, 2008. Ann. Bot. 101(6):863-72) Graham Moore **Cdk-like genes** (Cyclin-dependent kinases) Hypotetical gene 3 Storage protein gene **5BL** chromosome 2 SP 7 Heterochromatin **3BL** chromosome

Screening overlapping deletion with *Ph1* deletion phenotype

0.5 Mb region including a cluster of **Cdk-like genes**, with closest homology to CDK2 in mammals, with a block of **heterochromatin from 3B** inserted in the middle (Griffith et al, 2006. *Nature* 439, 749-752; Al-kaff et al, 2008. *Ann. Bot.* 101(6):863-72)

HYP3 was reannotated as the meiotic gene ZIP4

Ph1 locus is defined to a cluster of Cdk-like genes with a duplicated segment of heterochromatin from 3B, which contains a copy of the meiotic gene **ZIP4** (Martín et al, 2017. *Chromosoma* 126(6):669-680)

Release of the IWGSC RefSeq v1.0

Release of the IWGSC RefSeq v1.0

Sequence Identity Matrix:

	3A	3D	3B	5B	
TraesCS 3A 02G401700	ID				
TraesCS 3D 02G396500	0.949	ID			
TraesCS 3B 02G434600	0.936	0.949	ID		
TraesCS5B02G255100	0.843	0.858	0.885	ID	

Zip4 TILLING Mutants

TILLING lines in hexaploid wheat cv. 'Cadenza' available using the <u>www.wheat-tilling.com</u> database (Krasileva et al. 2017)

Line	Scaffold	WT base	Alt_base	Consequence	CDS position	Amino acids	Codons	Sift score	doma	in	Het/hom
Cadenza0198	TRIAE_CS42_5BL_TGACv1_ 404600_AA1305800	С	Т	missense_variant	107	T36I	aCc/aTc	NO	spo22		hom
Cadenza1691	TRIAE_CS42_5BL_TGACv1_ 404600_AA1305801	С	Т	missense_variant	500	A167V	gCc/gTc	NO	spo22		hom
Cadenza1363	TRIAE_CS42_5BL_TGACv1_ 404600_AA1305802	С	Т	missense_variant	1243	H415Y	Cat/Tat	NO	spo22	TPR	het
Cadenza1866	TRIAE_CS42_5BL_TGACv1_ 404600_AA1305803	С	т	missense_variant	1445	A482V	gCc/gTc	NO	TPR		het
Cadenza1127	TRIAE_CS42_5BL_TGACv1_ 404600_AA1305804	G	А	missense_variant	1766	G589D	gGc/gAc	NO			hom
Cadenza1007	TRIAE_CS42_5BL_TGACv1_ 404600_AA1305805	G	А	missense_variant	1805	R602H	cGt/cAt	NO			hom
Cadenza0348	TRIAE_CS42_5BL_TGACv1_ 404600_AA1305806	G	А	stop_gained	1836	W612*	tgG/tgA				het

Zip4 TILLING Mutants

Line	No. of cell examined	Univalents	Rod bivalents	Ring bivalents	Multivalents	Chiasma frequency	
Cad0000 x <i>Ae.</i> <i>variabilis</i> hybrids	128	32	1.5	0	0	1.5	Wild type
Cad1691 x <i>Ae.</i> <i>variabilis</i> hybrids	117	14.7	6.7	1.2	1.3	12.2	Zip4 missense
Cad0348 x <i>Ae.</i> <i>variabilis</i> hybrids	102	14.6	6.6	1.1	1.5	12.2	Zip4 stop codon
Ph1b deletion CS x Ae. variabilis hybrids	136	12.4	6.5	1.8	1.8	14.15	Ph1b deletion

Lola Rey

Cad0000 x Ae. Variabilis Wild type hybrids

Wild type

Cad1691 x *Ae. Variabilis* **Zip4 Missense mutation hybrids**

Cad0348 x *Ae. Variabilis Zip4* **Stop codon hybrids**

zip4 mutants

Sadiye Hayta

Mark Smedley

Localization of the large deletion (114 bp) in *TaZIP4-B2*.

Line	No. of cell examined	Univalents	Rod bivalents	Ring bivalents	Multivalents	Chiasma frequency
Fielder x <i>Ae.</i> <i>variabilis</i> hybrids	172	29	2.6	0	0.2	3.1
CRISPR Fielder x Ae. variabilis hybrids	124	9.6	5.6	1.9	3.1	16.7

PAM

A single gene, *ZIP4* on 5B, is responsible for the *Ph1* deletion phenotype on recombination

Crossover formation: a fragile balance between controlled DNA damage and repair

Crossover formation: a fragile balance between controlled DNA damage and repair

Does Ph1 affect synapsis between related chromosomes?

Plant material: Wheat-Rye hybrids n = 28

No hom<u>o</u>logs present

ph1b mutant

Immunolabeling

Crossover formation: a fragile balance between controlled DNA damage and repair

Wheat-rye *ph1b* mutant nc= 28

DAPI - DNA MLH1 - Expected COs

Synapsis between related chromosomes

- Number of COs \approx 7-8
- MLH1 number observed = 20-22

Absence of the *Ph1* locus can alleviate to some extent the MLH1 stalling

Wheat-rye WT nc = 28

DAPI - DNA MLH1 - Expected COs

Synapsis between related chromosomes

Number of COs ≈ 0-1
MLH1 number observed = 20-22

MLH1 don't correlate with the number of COs when synapsis occurs between related chromosomes

Timing of synapsis in relation to the telomere bouquet

Wheat-rye hybrid *ph1b* mutant

DAPI - DNA ASY1- Lateral element ZYP1- Synapsis Telomeres

Wheat-rye hybrid **WT**

Wheat *ph1b* mutant

DAPI - DNA ASY1- Lateral element ZYP1- Synapsis Telomeres

Wheat **WT**

Cytological diploidization of polyploid wheat

Independently of *Ph1* (*ZIP4-B2*), synapsis between related chromosomes does not take place during the telomere bouquet: only homologous synapsis can happen

 \rightarrow

Upon polyploidization, wheat already had a mechanism to sort homologs from related chromosomes

Ph1 (*ZIP4-B2*) provided the "fine-tuning" needed for the meiotic adaptation observed in hexaploid wheat

Dual effect of Ph1 (ZIP4-B2) on synapsis and crossover

Ph1 promotes early homologous **synapsis**

Prevents (MLH1) sites on related chromosomes from becoming **COs**

Multiple chromosome rearrangements in the absence of *Ph1/ZIP4-B2*

Heatmap comparing transcription in wheat and the *ph1b* mutant.

Root-tip metaphases of octoploid triticale (2n = 8x = 56) in the presence and absence of Ph1

Triticale WT

Triticale ph1b mutant

Effect of the TaZIP4-B2 deletion on meiotic and tetrad stages

Metaphase I

Effect of the TaZIP4-B2 deletion on meiotic and tetrad stages

Pollen viability in the CRISPR-Tazip4 mutant

Pollen profiling method: pollen size and number

Tetraploid

Abdul Kader Alabdullah

Open Access Editor's Choice Article

A Duplicated Copy of the Meiotic Gene ZIP4 Preserves up to 50% Pollen Viability and Grain Number in **Polyploid Wheat**

Abdul Kader Alabdullah 🗅, Graham Moore * and Azahara C. Martín 🕩

Effect of TaZIP4-B2 on fertility and grain number

Grain setting \implies Over 40% reduction in grain set.

The elimination of the duplicated *TaZIP4* on 5B resulted in:

- 56% of meiocytes exhibiting meiotic abnormalities
- 50% of tetrads exhibiting micronuclei
- 48% of smaller pollen grains
- Over 40% reduction in grain set.

Extraordinary value of the wheat *ZIP4* duplication on fertility and grain number

Can we decouple these 2 effects of *TaZIP4-B2*?

Wheat 2n= 42

WT wheat

Tazip4-B2

mutant

Mostly bivalents but also univalent + multivalents

Ph1 is necessary for wheat genome stability

Wheat- rye hybrid n = 28

Univalents + bivalents + multivalents

Tazip4-B2 mutant

Ph1 is a **barrier** for wild relatives **introgressions**

Cad1691 – Tazip4-B2 TILLING mutant

TaZIP4-B2 performs 2 key meiotic functions:

- A Promotion of chromosome synapsis between homologs early prophase I
- B) Suppression of COs between related chromosomes Late prophase I

Cad1691 – Tazip4-B2 TILLING mutant

TaZIP4-B2 performs 2 key meiotic functions:

- A Promotion of chromosome synapsis between homologs early prophase I
- B) Suppression of COs between related chromosomes Late prophase I

Crossovers take place only between homologs in the *zip4-ph1d* mutant

zip4-ph1d mutant

A genome B genome D genome

'separation-of-function' *Tazip4-B2* mutant

Meiotic metaphase I

Meiotic anaphase I

There is mostly balanced chromosome segregation in the *zip4-ph1d* mutant

- 8.6% laggards
- No splitting of sister chromatids
- No chromosome fragmentation

Early anaphase I

Late anaphase I

Tetrads stage

Fertility is the same in the *zip4-ph1d* mutant and WT wheat

zip4 mutant (n= 10)

WT (*n*= 10)

Pollen size and number - Multisizer 4e

zip4-ph1d mutant

Cadenza WT

Zip4-ph1d 0.10 0.05 -0.00 -50 40 60

zip4-ph1d mutant

30

Cadenza WT

zip4-ph1d mutants

The *zip4-ph1d* mutation allows crossover between related chromosomes in wheat haploids

Line	No. of cells	Rod bivalents		Ring bivalents		Multivalents		CO frequency per cell
	examined	Mean ± SE	Range	Mean ± SE	Range	Mean ± SE	Range	Mean ± SE
Haploid Cad-WT	566	0.60 ± 0.04	0-3	0.01 ± 0.003	0-1	0.005 ± 0.005	0-1	0.63 ± 0.03
Haploid <i>zip4-ph1d</i>	433	3.36 ± 0.04	0-6	0.66 ± 0.07	0-4	0.68 ± 0.08	0-3	6.26 ± 0.12

CONCLUSIONS

A single meiotic gene, **ZIP4** on 5B (*TaZIP4-B2*), is responsible for the *Ph1* deletion phenotype on recombination

Provides (at least) 2 key function:

- Promotes pairing-synapsis between homologs
- Supresses crossover between related chromosomes

Preservation of wheat stability and fertility (grain number)

Several Tazip4-B2 mutants lines available www.jic.ac.uk/research/germplasm-resources-unit

*CRISPR Tazip4-B2*mutant *Cad0348 Tazip4-B2* mutant

WHAT'S NEXT?

Can we obtain new TaZIP4-B2 mutants with useful phenotypic variation?

Thanks to:

Graham Moore Peter Shaw Lola Rey Tracie Draeger Ali Pendle Abdul Kader Alabdullah Dylan Phillips (Aberystwyth University) **RNAseq** Philippa Borrill Janet Higgins (Earlham Institute) **CRISPR** Sadiye Hayta Mark Smedley

Tilling mutants Cristóbal Uauy

flozbox-science.com

Biotechnology and Biological Sciences Research Council

